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preface
and

acl(nowleclgments

Self-organized critecality is a new way of viewing nature. The basic picture is
one where nature 1s perpetually out of balance, but organized in a poised
state—the crivical state—where anything can happen within well-defined
statistical faws. The atm of the science of self-organized criticality is to yield
nsight into the fundamental question of why nature 1s complex, not simple,
as the laws of physics imply.

Self-organized criticality explains some ubiquitous pateerns existing in
nature that we view as complex, Fractal structure and catastrophic events are
among those regularities. Applications range from the study of pulsars and
black holes to carthquakes and the evolution of life. One intriguing conse-
quence of the theory is that catastrophes can oceur for no reason whartsoever.
Mass extincrions may take placc without any external triggering mechanism
such as a volcanic eruption or a meteorite hitring the earch (although the the-

ory of course cannot rule out that this has in factoccurred ).
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Since we first proposed the idea in 1987, more than 2,000 papers have
been written on self-organized criticality, making ours the most cited paperin
physics during chac period. How Nature Works is the first book to deal with the
subject. The basic idea is simple, and most of the mathematical models that
have been used in the implementation of the theory are not complicated. Any-
one with some computer literacy and a PC can set the models up on his own to
verify the predicrions. Often, no more than high school mathematics is needed.
Some of the computer programs are even available on the Internet. Some of
the sandpile experiments are of no greater cost and difficulty than the dedi-
cated reader can perform him or herself. Unlike other subjects in physics, the
basic ideasare simple enough to be made accessible to a non-scientific audience

without being trivialized.

Many friends and colleagues have helped me, with both the research and che
book. The sctence has been all fun—in particular [ am grateful o Kurt
Wi esenfeld and Chao Tang, with whom I collaborated on the original idea,
and o Kan Chen, Kim Christensen, Maya Paczuski, Zeev Olami, Sergei
Maslov, Michael Creutz, Michael Woodford, Dimitris Stassinopolous, and
Jose Scheinkman, who pacticipated in the research that followed, bringing
the idea to life by applying it to many different phenomena in nature.
Thanks are due to Elaine Wiesenfeld for drawing the logo of self-organized
criticality. the sandpile. shown in Figure 1; to Ricard Sole for drawing the
dog-pulling Figure o; to Arch Johnston for providing Figure 2; to Jens
Feder and his group in Oslo for Figure 6 and the figures on their ricepile
experiment, Figures 15-17 and Plate 4; to Daniel Rothman and John P
Grotzinger for the photos of the Kings Peak formation, Figure 18; to Peter
Grassberger for the office version of the sandpile model, Figure 13; and to
Paolo Diodati for providing the original figures on the measurements of
acoustic emission from Stromboli, Figure 23. The impressive compurer
graphics on the sandpile in Plate 1, and the “Game of Life,” Plates 68, are
due to Michael Creutz.

A number of persons helped me increase the literary qualities of the

manuscript—unfortunately, the brevity of precise form thar is suitable for
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of all, I am grateful to Maya Paczuski and Jim Niederer who spent endless
hours improving the presentation and helping with organizing the material.
My children, Tine and Jakob and Thomas, checked the manuscript for read-
ability for non professionals, leading to revisions of several unclear passages.
Finally, Fam indebred to Jercy Lyons, William Frucht, and Robert Wexler of
Copernicus Books for substantial and invaluable help with che manuscripeat

all stages.



chapter 1

complexity

and
crltlcallty

How can the universe start with a few types of elementary particles ar the big
bang, and end up with life, history, economics, and literature? The question is
screaming out to be answered but it is seldom even asked. Why did the big
bang not form a simple gas of particles, or condense into one big crystal? We
see complex phenomena around us so often that we take them for granted
without looking for further explanaton. In fact, untl recently very lictle sci-
entific effort was devoted to understanding why nature is complex.

I will argue that complex behavior in nature reflects the tendency of
large systems with many components to evolve into a Poised, “criucal” state,
way out of balance, where minor disturbances may lead to events,

called avalanches, of all sizes. Most of the changes take place

through catastrophic events rather than by following a smooth
gradual path. The evolution to this very delicate state occurs
without design from any outside agent. The state is estab-

lished solely because of the dynamical tnteraceions
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state is self-organized. Self-organized criticalicy is so far the only known gen-
eral mechanism o generate com plexity.

To make this less abstract, consider the scenario ofachild at the beach let-
ting sand trickle down to form a pile (Figure 1). In the beginning, the pile is
flat, and the individual grains remain close to where they land. Their motion
can be understood in terms of their physical properties. As the process contin-
ues, the pile becomes steeper, and there will be little sand slides. As time goes
. on, the sand slides become bigger and bigger. Eventually, some of the sand
slides may even span all or most of the pile. At chat potnt, the system is far out
of balance, and its behavior can no longer be understood in terms of the be-
havior of the individual grains. The avalanches form a dynamic of their own,
which can be understood oaly from a holistic description of the properties of

the entire pile racher than from a reductionist dcscription of individual
grains: the sandptle is a com plex system.

N

Pl R - Wistmrrtanr

Figure 1 Sanclpile. (Drawing l:y Ms. ‘Elaine Wiesenfelcl.)
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The complex phenomena observed everywhere indicate that nature op-
rates at the self-organized critical state. The behavior of the critical sandpile
€

i which are associ-
mimics several phenomena observed across many sciences,

" ated with complexity. But before arguing that this is indeed the case, let us try

to sharpen the definition of the problem. What is com plexiry? How have sci-

entists and others addressed the problem in che past?

The Laws of Physics Are Simple,
but Nature Is COmplex

Starting from the Big Bang, the universe is supposed to have evoltlfed accord'—
ing to the faws of physics. By analyzing experiments and .observauons, physn—
cists have been very successful in finding those laws. The innermost sec-rers of
matter have been revealed down to ever smaller scales. Martter consists of
atoms, which are composed of elementary particles such aselectrons, protons,
and neutrons, which themselves are formed by quarks and gluons,and so 01.1.
All phenomena in nature, from the largest length scales spanned-by the uni-
verse to the smallest represented by the quark, should be explained by the
same laws of physics.

One such law is Newton's second law, f = ma, which sim ply tells us thatan
object that 1s subjected to a force responds by accelgrating at a rate propor-
tional to that force, This stmple law is sufficient to describe how an apple falls
to the ground, how planetsorbic the sun, and how galaxies .are attrfxcted r.o'one
another by the force of gravity. Maxwell’s equations describe the interactions
between electrical currents and magnetic ficlds, allowing us to understand
how an electric motoror a dynamo works. Einstein’s theory of relativity says
that Newton's laws have to be modified for objects moving at high velocities.
Quantum mechanics tells us thatelectrons in an atom can only existin st:fltes
with specific energies. The electrons can jump from one state to anocher with-
outspending any time in between. | -

These laws of physics are quite simple. They are expressed in mathemati-
cal equations that can all be written down on a couple of notebook pages.

However, the mathematics involved in solving these equations, even for sim-

nle sit atians mav be attire complicated This bannens when there are mocs
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than two objects to consider. For instance, calculating the motion of two plan-
ets moving in the gravitational field of the other planets and the sun is exorbi-
tantly difficule. The problem is insoluble with penand paper, and can be done
only approximately with the help ofcomputers, buc thatis usually considered
to be a practical problem rather than a fundamenral physics problem.

The philosophy of physics since its inception has been reductionisc that
the world around us can be understood in terms of the properties of simple
building blocks. Even the Greeks viewed the world as consisting of only a few
elements. Once we have broken the world down to its simplest fundamental
laws, and the most fundamental particles have been identified, the job is com-
plete. Once we have accomplished this fear, the role of physics—the “king of
sciences —will be played out and the stage can be left to the “lesser” sciences,
such as geophysics, chemistry, and biology, to sorrout the consequences.

In some special cases, physicists have succeeded in explaining the behav-
ior of systems conststing of many parts—atoms, molecules, or electrons, For
instance, the behavior of crystals, where trillions of atoms neatly occupy the
rows and columns of a regular periodic latrice, is relatively well understood
from the basic laws of physics. Acrystalisa prime example of an “ordered” sys-
tem, where each atom has its well-defined place on a regular, pertodic grid.
The crystal is understandable precisely because it looks the same everywhere.

Ar the opposite end of the spectrum from crystals are gases, which also
consist of many atoms or molecules. Gases can be understood because their
molecules rarely interact, by bumping into one another. In contrast to the
crystal. where the atoms are ordered on a lacrice, the atomsina gasformaran-
dom, disordered system. Again, the tractability of the systemn arises from its
uniformity. The gas looks the same everywhere, although at a given time the
individual atoms at different locations move with different velocities in
different directions. On average all atoms behave the same way.

However, we do not live in a simp[e, boring world composed only of plan-
ets orbiting other planets, regular infinite crystals, and simple gases or liquids.
Qur everyday situation is not that of falling apples. If we open the window, we
see an entirely different picrure. The surface of the earth IS MY intricate con-
glomerate of mountains, oceans, islands, r'ivers, volcanoes, glaciers, and earth-

quake faults, each of which has its own cl_\_a_ra_ct_e_ristic dynamics. Unlike very or-
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dered or disordered systems, landscapes differ from place to place and from
rime to time. It ts because of this vaciation that we can orient ourselves by study-
ing the local landscape around us. I will define systems with large variability as
complex. The variability may existon a wide range of length scalea. Il"u're zoom in
closer and closer, or look out further and further, we find vartability at each
level of magnification, with more and more new details appearing. In the uni-
verse, there is variability on the greatest scale. Just about every week, there is a
new report from the Hubble telescope orbiting the earth, or from interolane-
tary satellites, on some previously undiscovered phenomenon. Compleicity isa
Chinese box phenomenon. In each box there are new surprises. Many different
quantitative general definitions of complexity have been atempted, without
much success, so let us think of complexity simply as variability. Crystals and
gases and orbiting planets are not complex, but landscapes are.

As if the variability seen in astronomy and geophysics were not enough,
the complexity has many more layers. Biological life has evolved on earth,
with myriad different species, many with billions of individuals, competing
and interacting with each other and with the environment. At che end of one
tiny branch of biology we find ourselves. We can recognize other humans be— |
cause we are all different. The human body and brain are formed by an intri-
catearrangement of interacting cells. The brain may be the mostcomplex sys-
tem of all because it can form a representation of the complex outer world.
QOur history, with its record of u pheavals, wars, religions, and Political systeins,
constitutes yet another level ofcomplexity involving modern human societies
with economies composed of consumetrs, producers, thieves, governments,
and economists.

Thus, the world that we actually observe is full of all kinds of structure
and surprises. How does variability emerge out of simple invariable laws?
Most phenomena that we observe around us seem rather distant from the
basic laws of physics. It is a futile endeavor to try to explain most natural phe-
nomena in detail by starting from particle physics and following the trajecto-
ries of all particles. The combined power of all the computers in the world
does not even come close to the capacity needed for such an underraking.

The fact that the laws of physics specify everything (that they are deter-
..minicr:,-\ s i—pnmlwm:w.mw
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physics during the last two centuries combined with the advances of modern
high-speed com puters—that everything can be understood from “firse prin-
ciples”"—has been thoroughly shattered. About thirty years ago, in the in-
fancy ofthe computerera, there was a racher extensive effort, known as limits fo
growth, thac had the goal of making global predictions. The hope was to be able
to forecase, among other things, the growth of the human population and its
impact on the supply of natural resources. The project failed miserably be-
cause the outcome depended on unpredictable factors not explicicly incorpo-
rated into the program, Perhaps predictions on global warming fall inco the
same category, since we are dealing with long-term predictions in a com plex
system, even though we have a good understanding of the physics of weather,

The lawsof physicscan ex plain how an apple falls but not why Newton, a
partofacomplex world, was watching the apple. Nor does physics have much
to say abouc the apples origin, Ultimately, though, we believe that all the com-
plex phenomena, including biological life, do indeed obey physical laws: we
are simply unable to make the connection from atoms in which we know chat
the laws are correct, through the chemistry ofcom plicated organic molecules,
to the formation of cells, and to the arrangement of those cells into living or-
ganisms, There has never been any proof of a metaphysical process not fol-
lowing the laws of physics chat would distinguish living matter from any
other. One might wonder whether this state of affairs means that we cannot
find general “laws of nature” describing why the ordinary things that we actu-
ally observe around us are complex rather than simple.

The question of the origin of complexity from strmple laws of physics—
maybe the biggest puzzle of all—has only recently emerged as an active sci-
ence. One reason is that high-spced computers, which are essential in this
study, have not been generally available before. However, even now the science
of complexiry is shrouded in a good deal of skepticism—it is not clear how
any general result can possibly be hclpful, because each science works well
within its own domain.

Because of our inability to directly calculate how complex phenomena
atone level arise from the physical mechanisms w0rk'\ng ata dcepcr level, sci-
entists sometimes throw up their hands and refer to these phenomena as

“emergent.” They just pop out of nowhere. Geophysics emerges from astro-
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physics. Chemistry emerges from physics. Biolog)f' cmcrgcs from chemistry
and geophysics, and so on. Each science develops its own jargon, anci works
-wil:h its own objects and concepts. Geophysicists talk abour tectonic plate
motion and earthquakes without reference to astrophysics, biologists de-
scribe the properties and evolution of species without reference to geo-
Physics, economists describe human monetary transactions without refer-
ence to biology, and so on. There is nothing wrong with that Because of the
seeming inttaccability ofcmergcnt phcnomcna, no other modus opcrandi is
possiblc. Ifno new phenomena emerged in large systems out of the dynamics
of systems working ata lower level, then we would need no scientists but par-
ticle physicists, stnce there would be no other areas to cover. But then there
would be no particle physicists. Quality, in some way, emerges from quan-
tity—burt how? First let us review a couple of previous approaches to dealing

with compléx phenomena.

Storyteﬂing Versus Science

The reductionist methods of physics—dertailed predictions followed by com-
parison with reproducible experiments—are impossible in vast areas of sci-
entific interest. The question of how to deal with this problem has been
clearly formulated by che eminent paleontologistand science writer Stephen

Jay Gould in his book Wonderful Life:

How should scientists operate when they must try to explain the resulcof
history, those inordinately complex events thatcan occur butonce in detaiicd
glory? Many large domains of nature—cosmology, geology, and evolution
among them—must be studied with the tools of history. The appropriate
methods focus on narrative, not experiment as usually conceived.

Gould throws up his hands and argues that only “storytelling” can be
used in many sciences because particular outcomes are contingent on many
single and unpredictable events. Experiments are irrelevant in evolution or
paleontology, because nothing is reproducible. History, including thatof cvo—
lution, is just “one damned thing after another.” We can explain in hindsight
what has happened, but we cannot predict whart will happen in the ﬁiturc.
The Danish philosopher Soren Kierkegaard expressed the same view in his
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famous phrase “Life is understood backwards, but must be lived forwards
[ Livet forstaas baglaens, men maa leves forlaens)”

Sciences have traditionally been grouped into two categories: hard sci-
ences, in which repeatable events can be predicted from a mathematical for-
malism expressing the laws of nature, and sof sciences, in which, because of
their inherent variability, only a narrative account of distinguishabie events
post mortem is possible. Physics, chemistry, and molecular biology belong o
the first category; history, biological evolution, 2nd economics belong to the
second.

Gould rightﬁilly attributes che variability of things, and therefore their
complexity, to contingency. Historical events depend on freak accidents, so if
the tape ofhistory 1s replayed many times with slighrly different initial con-
ditions, the outcome will differ vastly each time, The mysterious occurrences
of incidents leading to dramatic outcomes have fascinated historians and in-
spired fiction writers. Real 1ife’s dependence on freak events allows the

- fiction writer a huge amountof freedom, withour losing credibility.

Historians explain events in a narrarive language where event A leads w0
event B and Cleads wo D. Then, because of event D, event B leads to E. How-
ever, if the event C had not happened, then D and E would not have happened
either. The course of history would have changed into another sequence of
events, which would have been equally well explainable, in hindsighr, with a
different narrative. The discovery of America involved a long series of events,
each of crucial historical im portance for the actual outcome: Columbuys’ par-
ents had to meet each other, Columbus had o be born, he had to go to Spain
to get funding, the weather had to be reasonable, and so on. l-liscory is unpre-
dictable, but not unexplainable. There is nothing wrong with this way of
doing science, in which the goal is an accurate narrative account of spectfic
events. It is precisely che overwhelming impact of contingency that makes
those sciences interesting. There will always be more surpyises in store for us.
Incontrast, simple predictable systems, suchasan apple falling to the ground,
become boring after a while.

In the soft sciences, where contingency is pervasive, detailed long-term
prediction becomes impossible. A science of evolutionary biology, for exam-

ple, cannot explain why there are humans and elephants. Life as we see it
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today is just one very unlikely outcome among myriad other equally unlikely

Possibilities. For example, life on earth would be totally differenc if che di-
nosaurs had not become extiner, perhaps as a consequence of a meteor hitting
the earth instead of continuing in its benign orbit. An unlikely event is likely
to happen because there are so many unlikely evenes thatcould happen.

But what underlying properties of history and biology make them sensi-
tive to minor accidental events? In other words, what is the underlying nature
of the dynamics that leads to the interdependence of events and thus to com-
plexity? Why can incidencs happen that have dramaric global consequences?
Why the dichotorny of the sciences into two quite disparate groups with
differenc methods and styles, since presumably all systems in che final analysis
obey the same laws of nature?

Before going into the decails of the theory, letus explore, in general terms,
whata science of complexity could be.

What Cana Tl'ieory
ofCOmplexity Explain?

If all that we can do in the soft, complex sciences is to monitor events and
make short-term predictions by massive computations, then the soft sciences
are no place for physicists to be, and they should graceﬁilly leave the stage for
the “experts” who have detailed knowledge about their particular frelds. Ifone
cannot predict anything specific, then what is the poine?

In a well-publicized debate in January 1995 ac the Linnean instituce in
London, between the biologist Stuart Kauffman of the Santa Fe Institw te,and
John Maynard Smith of the University of Sussex, England, author of The
Theory of Evolution, Smith exclaimed that he did not find the subject of com-
plexity interesting, precisely because tt has not explained any detailed factin
nature,

Indeed, any theory of complexity must necessarily appear insufficient.
The vartability precludes the possibility that all detailed observations can be
condensed tnto a small number of mathemarical equations, similar to the

fundamencal laws of physics. At most, the theory can explain why there is vari-

1billrv arwvwhat freieal
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of a particular system will be. The theory will never predict elephants. Even
under the most optimistic circumstances, there will still be room for histori-
ans and fiction writers in the future.

A general theory of complex systems must necessarily be abstract. For ex-
ample, a cheory of life, in principle, must be able to describe all possible sce-
narios for evolution. It should be able to describe the mechanisms of life on
Mars, if life were to occur. This is an extremely precarious step. Any general
model we might constructcannot have any speciﬁc reference to actual species.
The model may, perhaps, not even refer to basic chemical processes, or to the
DNA molecules thar are integral partsof any life form that we know.

We must learn to free ourselves from seeing things the way they are! A
radical scientific view, indeed! If, following traditional scientific methods, we
concentrate on an accurate description of the details, we lose perspective. A
theory of life is likely to be a theory of a process, not a detailed account of ur-
terly accidental details of that process, such as the emergence of humans.

The theory must be statistical and therefore cannot produce speciﬁc de-
tails. Much of evolutionary theory, as presented for instance in Maynard
Smith’s book, is formulated tn terms of anecdotal evidence for the various
mechanisms at work. Anecdotal evidence carries weight only if enough of it
can be gathered to form a statistical statement. Collecting anecdotal evidence
can only be an tntermediate goal. In medicine, it was long ago realized that
anecdotal evidence from a single doctor’s observarion must yteld to evidence
basedona large, statistically significant set of observations. Confrontation be-
tween theories and experiments or observations, essential for anyscientificen-
deavor, takes place by comparing the statistical features of general patterns.

The abstractness and the statistical probabilistic nature of: any such theory might
appear revolting to geophysicists, biologists, and economists, ex pecting to aim
for photographic characterizarion of real phenomena.

Perhaps too much emphasis has been put on detailed prediction, or fore-
castng, in science in today’s materialistic world. In geophysics, the emphasis
1s on predicting speciﬁc earthquakes or other disasters. Funding is provided
according to the extent to which the budget agencies and reviewers judge that
progress might be achieved. This leadsto charlatanism and even fraud, not to

menbion thar onad ceiermricre 4 me embdned ~Eeb o ~commee ©0 1 1o ol . 1
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gis in economics 1s on predicrion of stock prices and other economic indica-
.grs, since accurate predictions allow you to make money. Not much effort
i-;;,s been devoted to describing economic systems in an unbiased, detached
way, asone would describe, say,an ant’s nest,

Actually, physicists are accustomed to dealing with probabulistic theories,
in which the specific outcome of an experiment cannot be predicted—only
certain statistical features. Three fundamental theories in physics are of a sta-
tistical nature. First, statistical mechanics deals with large systems in equilib»
rium, such as the gas of atoms in the air surrounding us. Sratistical mechanics
tells us how to calculate average properties of the many atoms forming the gas,
such as the temperature and the pressure. The theory does not give us the po-
sitions and the velocities of all the individual atoms (and we couldn’t care less
anyhow). Second, quantum mechanics tells us that we cannot pi’edict both
the speciﬁc position and velocity of a small Particle such as an electron at the
same time, but only the probability that an experiment would find the parti-
cle atacercain position. Again, we are most often interested only in some aver-
age property of many electrons, as for instance the electric current througha
wire, which may again be prediceable. Third, chaos theory tells us that many
simple mechanical systems, for example pendulums that are pushed periodi-
cally, may show unpredictable behavior. We don't know exactly where the
pendulum will be after a long time, no matter how well we know the equa-
tions for its motion and its intctal state.

As pointed out by the philosopher Karl Popper, prediction is our best
means of distinguishing science from pseudoscience. To predict tlie statistics
of actual phenomena rather than the speciﬁc outcome is a quite legitimare
and ordinary way of confronting theory with observations.

Whart makes the situation for biology, economics, or geophysics concep-
wally different, and what makes it more difficult to accept this state of affairs,
is‘that the outcome of the process is important. As humans, we care about the
specific state of the system. We don’t just observe the average properties of
many small unpredictable events, but only one specific outcome in its full
glory. The fact that we may understand the statistical properties of earth-

quakes, such as the average number of earthquakes per year ofacertain size in

acertain area. is of little consolation to thase wha have been affected by larae
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devastating earcthquakes. In biology, it is important that the dinosaur van-
ished during a large extincrion event and made room for us.

Psychologically, we tend to view our pacticular situation as unique. Itis
emotionally unacceptable to view our entire existence as one possible fragile
outcome among zillions of others. The idea of many parallel possible un-
verses is hard to accept, although it has been used by several science-fiction
writers. The problem with understanding our world is that we have nothing
to compare it with.

We cannot overcome the problem ofu npredictability. Kierkegaard’s phi-

losophy represents the fundamental and universal situation of life on earch,

So how can there be a general theory or science of complexity? If such a theory
cannot explain any spcciﬁc derails, what is the theory supposed to explain?
How, precisely, can one confront theory with reality? Without this crucial
step, there can be no science.

Fortunately, there are a number ofubiquitous general empirical observa-
uons across the individual sciences that cannot be understood wichin the sec
sfreferences developed within the specific scientific domains. These phenom-
'na are the occurrence of large catastrophic events, fractals, one-over-f noise

t /f noise), and LZipf'slaw. A litmus test of a theory of complexity is its ability
o explain these general observations. Why ate they universal, thacis, why do

ey pop up everywhere?

—atastrophes Follow a Simple Pattern

}ecause of their composite nature, complex systems can exhibit catastro phic
sehavior, where one part of the system can affect many others by a domino
ffect. Cracks in the crust of the earth propagate in this way to produce earth-
luakes, sometimes with tremendous energies.

Scientists studying earthquakes look for speciﬁc mechanisms for large
vents, using a narrative individual description for each event in isolation
rom the others. This occurs even though the number of earthquakes of a
nven magnitude follows a glaringly simple distribution function known as
he Gutenberg—Richter law. It turns out that every time there are abour 1,000
arthquakes of, say, magnitude 4 on the Richter scale, there are 100 earth-

|uakes of magnitude 5, 10 of magnitude 6, and so on. This law is il lustrated in
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Figure 22, which shows how many earthquakes there were of each magnitude -
in a region of the southeastern United States known as the New Madrid
earthquake zone during the period 1974~1983. Figure 2b shows where those
earthquakes took place. The size of the dots represents the magnitudes of the
eacthquakes. The information contained in the figures was collected by Arch
C. Johnston and Susan Nava of the Memphis Srate University. The scaleis a
logarithmic one, tn which the numbers on the vertical axis are 10, 100, 1,000
instead of 1, 2, 3. The Gutenberg-Richter law manifests itself as a straight line
in this plot.

N (Earthquakes/ Year)

0.1

0.0 T T T T T -
t 2 3 4 5 6

Magrutude {my) - Lag E

(a) (b)

19741583

Figure 2. (a) Distribution ofeart}lq\ml(e magnitudes 1n the New
Madrid zone in the southeastern United States during the period

1974 -1 983. collected by Arch Johnston and Susan Nava of
Memplﬁs State University. The points show the number of eartl\quakes
with magnitude larger than a given magnitur]e m. The straight line 1nd:-
cates a power law distribution ofearthqua](es. This simple law 15 known
as the Gutenberg—Riehter law. (b) Locations of the earthqual(es used 1n
the plot. The size of the dots represent the magnitudes of the earthqual(es.
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The horizontal x-axis is also logarithmic, since the magnitude m mea-
sures the logarithm of the energy released by the earthquake, rather than the
energy itself. Thus, an earthquake of magnitude 6 is ten times stronger than
an earthquake of magnirude 5, and an earthquake of magnitude 4 is ten times
stronger than an earthquake of magnitude 3. An earthquake of magnitude 8
is 10 million times more energetic than one of magnitude 1, which corre-
sponds toa farge truck passing by. By using worldwide earthquake catalogues,
the straighe line can be extended to earthquakes of magnitudes 7, 8, and o.
This law is amazing! How can the dynamics of all the elements of a system as
complicated as the crust of the earth, with mountains, valleys, lakes, and geo-
logical structures of enormous diversity, conspire, as if by magic, 1o produce a
law with such extreme simpliciry? The law shows that large earthquakes do
not play a special role; they follow the same law as small ear[hquakes. Thus, i
appears that one should not try to come up with speciﬁc explanations for
[arge earthquakes, but rather with a general thcory encompassing all earth-
quakes, large and small. '

The importance of the Gutenberg—Richter law cannot be exaggerated. [t
is precisely the observation of such simple empirical laws in nature that motivates us to search
for a theory of complexity. Such a theory would complement the effores of geo-
physicists who have been occupied with their detailed observations and theo-
rizing on specific large earthquakes and fault zones without concern about
the general picture. One explanation for cach earthquake, or for each fault.

In their fascinating book Tales of the Earth, Officer and Page argue that the
regularity of numerous catastrophic phenomena on earth, including flood-
ing, earthquakes, and volcanic eruptions, has a message for us on the basic
mechanisms driving the earth, which we must unravel in order to deal with
those phenomena (or, perhaps, to understand why we cannot deal with
them),

In economics, an empirical pattern similar to the Gurenberg—Richter
law holds. Benoit Mandelbrot, of IBM's T. J. Watson Cenrer in New York,
pointed out in 1966 that the probability of having small and large variations
on prices of stocks, cotton, and other commodities follows a very simple pat-
tern, known as a Levy distribution. Mandelbrot had collected data for the

variation of cotton prices from month to month over several years. He then

Complexity and Criticaiity 15

“counted how often the monthly variation was between 1o and 20 percent, how

often the variation was between 5 and 10 percent, and so on, and plotted the
results on a logarithmic plot (Figure 3). Just as Johnston and Nava counted
how many earthquakes there were of each size, Mandelbrot counted how
many months there were with a given price variation. Note the smooth tran-
sition from small variations to large ones. The distribution of price changes
follows approximately a straight line, a power law. The price variations are
“scale free” with no typical size of the variations, just as earthquakes do not
have a typical characteristic size.

Mandelbrot studied several different commodities, and found that they
all followed a similar pattern, but he did not speculate about the origin of the
regular behavior that he observed. Economists have chosen largely to ignore
Mandelbrot's work, mostly because it doesn’t fit into the generally accepted
picrure. They would discard large events, since these events can be atcributed
o speciﬁc “abnormal circumstances,” such as program trading for the crash

of October 1987, and excessive borrowing for the crash of 192q. Contingency
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Fig\_.u-e 3. (a) Montlily variations of cotton prices (Mandell)rot. 1963)
durmg a period of 30 months. (i)) The curve shows the number of mont s
where the relative variation exceeded a given fraction. Note the smooth
_trat_isition from small variations to large variations. The straight line
indicates a power law. Other commodities follow a similar pattern.
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is used as an argument for statistical exclusion. Economists often “cull” or
“prune” the data before analysis. How can there be a general theory of events
that occur once? However, che fact that large events follow the same law as
small evenes indicates that there is nothing special about those events, despite
their possibly devastating consequences.

Similarly, in biological evolution, Professor David Raup of the University
of Chicago has pointed out that the distribution of extinction events follows a
smooth distribution where large events, such as the Cretaceous extinction of
dinosaurs and many other spectes, occur with f'airiy well defined probability
and regularicy. He used data collected by Jack Sepkoski. who had spent “ren
years in the library” researching the fossil records of thousands of marine
species. Sepkoski split geological history into 150 consecutive periods of 4 mil-
lion years. For each period, he estimated what fraction of species had disap-
peared since the previous period (Figure 4). The estimate is a measure of the ex-

tnceion rate. Sometimes there were very few extinctions, less than ercent,
fy
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Figure 4, Biological extinetions over the last 600 mllion yedrs as
recorded l)y John Seplcosid. Jr. who spent 10 years 1n the library collect-
ing the data from the fossil record. The curve shows the estimated per-
centage of families that went extinct w_itl‘lin intervals of approximately 4

million years (Seplcoslci. 1993).
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and sometimes there were more than 50 percent extinctions. The famous Cre-
taceous event in which the dinosaurs became extinct is not even among the
most prominent. Raup simply counted the number of periods in which
the relative number of extinctions was less than 10 petcent, how many periods
the variation was between 10 and 20 percent, and so on, and made a histogram
(Figure 5)- This is the same type of analysis that Mandelbrot made for cotton

prices: extinction rates replace price variations, 4-million-year intervals replace
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Figure 3. Histogram of the extinction events from Figure 4 as shown
l:y Raup. Tl‘le cliagram shows t]le number of four-m;nion-year periods
where the extinction rate was within a given range. The large well-
known extinetion events appear 1n the tail of the curve.
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monthly ones. The resulting histogram forms a smooth curve, with the num-
ber of large events extending smoothly from the much larger number of small
events.

Although large eventsoccur witha well-defined probability, chis does not
mean the phenomenon is periodic, as Raup thought it was. The fact that an
earthquake has not taken place for a long time does not mean that one is due.
Thessituation is similar to thatof a gambling roulette. Even ifon average black
comes out every second time, that does not mean that the outcome alternates
between black and red. After seven consecutive reds, the probability that the
next event is black 1s still 1/2. The same goes for earthquakes. That events
occur atsome average interval does not mean that they are cyclical. For exam-
Ple, the fact that wars happen on average, say, every thirty years, cannot be used
to predict the next war. The variations of this interval are large.

Again, speciﬁc narratives may explain each large catastrophe, but the reg-
ularity, not to be confused with periodiciry, suggests that the same mecha-
nisms work on all scales, from che extinctions taking place every day, to the
largest one, the Cambrian explosion, causing the extinction of up to 95 per-
cencofall species, and, Forcunatcly, the creation of a sufﬁciently compensating
nurmber of species. -

Thatcartastrophes occur atall is quite amazing. They stand in sharp con-
trast to the theory of uniformitarianism, or gradualism, which was formed in
the last century by the geophysicist Charles Lyell in his book Principles of Geol-
ogy. According to his thcory, all change 1s caused by processes that we currcntly
observe, which have worked at the same rate at all times. For instance, Lyell
proposed that landscapes are formed by gradual processes, rather chan catas-
trophes like Noah's flood, and the features that we see today were made by
slow persistent processes, with time as the “great enabler” that eventually
makes large changes.

Lyell’s uniformitarian view appears perfectly logical. The laws of physics
are generally expressed as smooth, continuous equations. Since these laws
should describe everything, it is natural to expect that the phenomena that we
observe should also vary in a smooth and gradual manner. An opposing phi-
losophy, catastrophism, claims chat changes take place mostly through sud-

den cataclysmic events. Since catastrophism smacks of creationism, it has
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been largely rejected by the scientific community, despite the fact thatcaras-

rophes actually rake place.

| Fractal Geometry

Mandelbrot has coined the word fractal for geometrical structures with fea-
tures of all length scales, and was among the first to make the astounding ob-
servation that nature is generally fracral. Figure 6ashows the coastof Norway,
which appears as a hierarchical structure of fiords, and fjords within fords,
and fjords within fjords of fjords. The question “How long is a typical fjord?”

as no answer—the phenomenon is “seale free.” [fyou see a picture of part of
P Y P

F;gure 6. (a) The coast of Norway. Note t]le “fractal.“ }tierarc}lical
geometry, with fjor&s, and ﬁords within fjords, and so on. Mandelbrot
}las pointed out tl\at landscapes often are fractals. (E-om Fecler. 1988.)




20 How Nature Works

45 -

4.0
E
=3
—
oo
o

| L{s} = as?-D
5
3 D =152 +0.01
30 T T T T
-05 0.0 0.5 1.0 1.5 2.0

log 8(km)

Figure 6. Continued (b) The lengt}t L of the coast measured by cover-

ing the coast with boxes, like tl'le ones sllown n (a). of various Iengt}ls 3.
The straight line 1ndicates that the coast 1s fractal. The slope of the line
yields the "fractal dimenston” of the coast of Norway. D=152.

the flord, or partof the coastline, you wouldn'tknow how large itis if the pic-
ture does not also show a ruler. Also, the length measured depends on the
resolution of the ruler used for the measurement. A very large ruler that
measures features only on the scale of miles will yield a much smaller esti-
mate of the length than ifa fine ruler, which can follow details on the scale of
meters, 1s used.

One way of representing this is to measure how many boxes of a certain
size § are needed to cover the coast. Obviously, the smaller the box, the more
boxes are needed to cover the coast. Figure 6b shows the logarithm of the
length L measured with boxes of size 3. Had the coast been a straight line, of
dimension 1, the number of boxes would be inversely proportional to 8, so the
measured length would be independent of 8, and the curve would be flat. If
you measure the length of a line, it doesn’t matter what the size of the ruler is.
However, the number of boxes needed grows much faster than that since the

boxes have to follow the wrinkles of the coastline, so the straight line has a
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slope. The negative slope of the line gives the “fractal dimension” of the coast.
‘Fractals in general have dimensions that are not stmple integer numbers.
Here, one finds D = 152, showing thar the coast is somewhere between a
straight line with dimension 1 and a surface of dimension 2.

A mountain range includes peaks that may range from centimeters to
kilometers. No size of mountain is typical. Similarly, there are clouds of
all sizes, with large clouds looking much like enlarged versions of small
clouds. The universe consists of galaxies, and clusters of galaxies, and clusters
of clusters of galaxies, and so on. No size of fjord, mountain, or cloud is the
“right” size.

Alotofwork has been done characterizing the geometrical properties of
fractals, but the problem of the dynamical origin of fractals persists—where
do they come from? “Fractals: Where is the Physics?” Leo Kadanoff of the
University of Chicago asked in a famous editorial in Physics Today in 1987. Un-
forrunately, the rle was generally viewed as a rhetorical dismissal of the
whole concept of fractals rather than a legitimace cry for an understanding of
the phenomenon.

The importance of Mandelbrot's work parallels that of Galileo, who ob-
served that planets orbir the sun. Just as Newton's laws are needed to explain
planetary motion, a general theoretical framework is needed to explain the -
fractal structure of Nature. Nothing in the previously known general laws of

physics hines at the emergence of fractals.

“One-Over-f " Noise: Fractals in Time

A phenomenon called 1 /f (one-over-f ) “noise” has been observed in systems
asdiverse as the flow of the river Nile, light from quasars (which are large, far-
away objects in the universe), and highway traffic. Figure 7a shows the light
from a quasar measured over a period of eighty years. There are features of all
sizes: rapicl variations over minutes, and slow variations over years. In fact,
there seems to be a gradual decrease over the entire period of eighcy years,
which mighr lead to the erroneous identification of a general rendency to-
ward decreasing intensity within a human lifetime, a tendency that needs ex-

planation‘
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The signal can beseenasa superposition of bum ps ofall sizes; it looks like
amountain landscape in time, rather than space. The signal can, equivalently,
be seen as a superposition of- periodic signals of all frequencies. This is another
way of stating that there are features at all time scales. Just as Norway has
fiords of all sizes, a 1/f signal has bumps of all durations. The strength or
“power” of its frequency component is farger for the small frequencies; 1 15
inversely proportional to the frequency, f That is why we call it 1/f noise,
although it might be musleading to call it noise rather than signal. A simple
example is the velocity of a car driving along a heavily trafhcked highway.
There are periods ofstop and goofall lengths of time, corresponding to trafhic
jamsofall sizes. The British geophysicist ]. Hurstspenta lifetime studying che
water level of the Nile. Again, the signal is 1 /f, with intecvals of high levels
extending over short, intermediate, and long periods.

Figure 7 also shows the record of global average temperature variation
onearth over the same period. This record is rising over roughly the same pe-
riod as the quasar intensity decreases. One could conclude thart the changes
of quasar intensity and global temperature are correlated, but most reason-
able peop[e would not. In fact, the temperature variations can also be inter-
preted as /f noise. The apparent increase in temperature mighe well be a
statistical fluctuation rather than an indication ofglobal warming generated
by human activity. Amusingly, De. Richard Voss of IBM has demonstrated
that the variations in music have a I/fspccrrum. Maybe we write music to
mirror nature,

One-over-f noise is different from random white noise, in which there are
no correlations berween the value of the signal from one moment to the next.
In Figure 7c the white noise pattern has no slow fluctuations, that is, no large
bumps. White noise sounds {ike the hiss on the radio in becween stations rather
than music, and includes all frequencies in an equal amount. A simple peri-
odic behavior with just one frequency would be just one tone continuing for-
ever. The 1 / 'f noise lies between these two extremes; it is interesting and com-
plex, whereas white noise is simple and boring. Amazingly, despite the fact that
1/ fnoise is ubiquitous, there has been no general understanding ofits origin. It
has been one of the most stubborn problems in physics. Sometimes the spec-

trum is not 1/f, buc 1/f* where ot is anexponentwith a value between oand 2.
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Flgure Z (a) Light emitted from a quasar cluring a period of 80 years
from 1887—1 967 (Press. 1 978). Note the pattern of fast. slow. and
intermediate range fluetuations. This type of signal 1s known as one-over-f
nowse {1/fnoise), and 1s extremely common 1n nature. (b) Global tempera-
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Egure Z Continued (c) For comparison. a “boring" random, white noise
pattern 15 also shown. This pattern has no slow fluctuations, 1., nO large

bumps.

Zipf's Law
Ina remarkable book that came out in 1949, Human Bebavior and the Principle of
Least Effort, Professor George Kingsley Zipf of Harvard University made a
number of striking observations of some simple regularities in systems of
human origin. Figure 8a shows how many cities in the world (circa 1920) had
more than a given number of inhabitants. There were acouple of cities larger
than 8§ million, ten larger than 1 million, and 100 larger than 200,000. The
curve isroughly astraighe lineona logarithmic plot. Note the similarity with
the Gutenberg—Richcer law, although, of course, the phenomena bcing de-
scribed couldn't be more different. Zipf made similar plots for many geo-
graphical areas and found the same behavior.

Zipfalso counted how often a given word was used in a piece of literature,
such as James Joyce's Ulysses or a colleccion of American newspapers. The tenth

most frequently used word (the word of“rank” 10) appeared 2,65 3 times. The
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gwentieth most used word appeared 1,3 11 times. The 20,000th most frequent
E;ord was used only once. Figure 8b shows the frequency of words used in the
f}nglish language versus their ranking. The word of rank 1, the, is used wich a
frequency of g percent. The word of rank 10, [, hasa frequency of t percent, the
word of rank 100, 52y, is used with a frequency of o.1 percent, and soon. Again, a
remarkablestraight line emerges. It does not matter whether the dara are taken
from newspapers, the Bible, or Ulysses—the curve is the same. The regularity
expressed by the straight lines in the logarithmic plot of rank versus frequency,
with slope near unity, is referred to as Zipf 's law,

Although Zipf does allude to the source of this regulariry being the indi-

vidual agent trying to minimize his effort, he gave no hints as to how to get

10,000

Size (in thousands)

Rank

Figure 8. (a) Ranl(ing of erties ])y s1ze awum?l the )'rear 1920 (prf
1949). The curve shows the number of eities 1n which the populatmn

exceeds a given si1ze or, equivalently. the relative ranking of eities versus

their populat;on.
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Figure 8. Continued (l)) Ranking of words in the Englis}t language.
The curve shows how many words appear with more than a g;ven fre-
quency.

from the individual level to the statistical observations. Zipf's law as well as
the other three phenomena are emergent in the sense that they are not ob-
vious consequences of the underlying dynamical rules.

Note that all the observations are of statistical nature. The Gurenberg-
Richter law s a statement about how many earthquakes there are of
each size—not where and when a particular earthquake will or did rake
place. Zipf's law deals with the number of cities within a given range of popu-
lations—not with why a particular city has a certain number of inhabitants.
The various laws are expressed as distribution functions for measurable quan-

ticies. Therefore, a theory explaining those phenomena must also be seatisti-
cal, as we have already argued.
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Power La_ws and Criticality

“What does it mean thatsomethingisa straight line onadouble logarithmic

Plol:? Mathematically, such straight lines are called “powcr laws,” since they
show that some quantity N can be expressed as some power of another

quanticy s
N(s)= 5"

Here, s could be the energy released by an earthquake, and N(s) could be the
number of earthquakes with thac energy. The quantity s could equally well be
the length of a fjord, and N{s) could be the number of fjords of that length.
Fractals are characterized by power law distributions. Taking the logarithm
on both sides of the equation above we find

log N(s) = — 7logs.

This shows that log N(s) plotted versus log s is a straight line. The expo-
nentT is the slope of the straight line. For instance, in Zipf's law the number N
of cities with more than s inhabitants was expressed as N(s) = t/s=15""That
is a power law with exponent — 1. Essentially all the phenomena to be dis-
cussed in this book can be expressed in terms of power laws. The scale invari-
ance can be seen from the simple fact thac the straight line looks the same
everywhere. There are no features at some scale that makes thac particular
scale stand out. There are no kinks or bumps anywhere. Of course, this must
eventually break down at small and large scales. There are no fjords larger
than Norway, and no fjords smaller than a molecule of water. Buc in between
these two extremes there are features of all scales. In his beautiful book Fractals,
Chaos, Power Laws: Minutes from an Infinite Paradise, Manfred Schroeder reviews
the abundance and significance of power laws in nature.

Thus, the problem of explaining the observed statistical features of com-
plex systems can be phrased mathematically as the problem of explaining
the underlying power laws, and more speciﬁcally the values of the exponents.
Let us first, however, consider a couple of approaches that have proven un-

successful,
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Systems in Balance Are Not Complex

Physicists have had some experience in dealing with large “many body” sys-
tems, in particular with systems thar are tn balance in a stable equilibrium. A
gasofatomsand the sand ata flatbeach are large systems in equilibrium; they
are “in balance.” If an equilibrium system is disturbed slightly, for instance by
pushing a grain of sand somewhere, not much happens. In general, systems in
balance donot exhibitany of the interesting behavior discussed above, such as large catastrophes,
1/f noise,and fractals.

There 1s one minor reservation. A closed equilibrium systern can show
complex behavior characterized by power laws, but only under very special
circumstances. [here has been spectacular progress in our understanding of
systems at a phase transition where the system goes from adisordered state to
an ordered state, for tnstance when the tem perature is varied. Rightat the erit-
ical poinrseparating these cwo phases there is complex behavior characterized
by scale-free behavior, with ordered domains of all sizes. To reach the critical
point, the temperature has to be tuned very accurately in order to have com-
plex behavior. But outside che laboratory no one is around to tune the param-
eter to the very special critical point, so this does not provide insight into the
widespread occurrence of complexity in nature.

In the past, it has often been more or less tacitly assumed that large sys-
tems, such as those we find in biology and economics, are in a stable balance,
like the sand ata flat beach. The leading economic theory up to now, the gen-
eral equilibrium theory, assumes that perfect markets, perfea rationalicy. and
so on bring economic systems into stable Nash equilibria in which no agent
can improve his situation by any action. In the equiltbrium state, small per-
turbations or shocks will cause only small disturbances, modifying the equi-
librium seate only slighcly. The system’s response is proportional to the size of
the impacr; equilibrium systemns are said to be “linear.” Contingency is irrele-
vant. Small freak events can never have dramatic consequences. Large fluctua-
tons in equilibrium systems can occur only if many random events acciden-
taIly pull in the same direction, which is prohibitively unlikely. Therefore,
equilibrium theory does not explain much of what is actually going on, such

as why stock prices Auctuate the way thcy do.
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Ageneral equilibrium theory has not been explicitly formulated for.biol—
ogfr but a picture of nature as being in “balance” often prevails. Nature is sup-
bosed to be something thatcan, in principle, be conserved; this idea motivates
environmentalists and conservationists. No wonder: in a human lifetime the
‘natural world changes very litdle, so equilibrium concepts may seem natural
or intuitive. However, if nature is in balance, how did we get here in the first
PIace? How can there be evolution if things are tn balance? Systerns in balance
or equilibrium, by definition, do not go anywhere. Does nature as we see it
now (or a few years ago before we “started” polluting our environment) have
any preferential status from an evolutionary pointof view? Implicitly, the idea
of nature being n balance is intimately related to the view that humans are at
the center: our natural world is the “rightone.”

As poineed out by Gould and Eldridge, the apparentequilibrium is only
a period of tranquillity, or stasis, between intermictent buests of activity and
volaulity in which many species become extinct and new ones emerge. Also,
the rate of evolution of individual spectes, as measured, for instance, by their
change in size, takes place episodically in spurts. This phenomenon is called
punciuated equilibrium. The concept of punctuated equilibrium turns out to be
at the heart of the dynamics of complex systems. Large intermirtent bursts
have no place in equiltbrium systems, but are ubiquitous in history, biology,
and economuics.

None of the phenomena described above can be explained within an equi-
librium picture. On the other hand, no general theory for large nonequilibrium
systems exists. The legendary Hungarian mathematician John von Neumann
once referred 1o the theory of nonequilibrium systems as the “theory of non-
elephanrs," that s, there can be no unique theoryofthis vastarea of science.

Nevertheless, such a theory ofnon—elephants will be attempted here. The
picture that we should keep in mind s that of a steep sandpile, emit[ing

avalanches ofall sizes, contrasting with the equilibrium flat sand box.

Chaos I's Not Complexity

In the 1980s a revolution occurred in our understanding of simple dynamical

systems. [t had been realized for some time that systems with a few degrees of
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freedom could exhibit chaotic behavior. Their future behavior is unpre-
dictable no matter how accurately one knows their initial state, even if we had
perfect knowledge of the equations that govern their motion, as we have for
the swing, ora pendulum, being pushed at regular intervals.

The revolution was triggered by Mitch Feigenbaum of Los Alamos Na-
tional Laboratory, a scientist working in an environment similar to mine. He
had constructed a simple and elegant theory for the transition to chaos for a
stmple model of a predator-prey system. The model was actually tovented
several years earlier by the British biologist Robert May. The number of indi-
viduals, x;;, who are alive one year can be related to the number of species that

arealive the following year, x,+,, by a simple “map":
Xty = RX"<1 - x.n)‘

Feigenbaum studied chis map using a simple pocket calculator. Starting
with a random value of x,, the map was used repeated[y to generare the popu-
lations ac subsequent years, For small values of the paraméter A, the proce-
dure would eventually approach a fixed point at which the population re-
mains constant ever after. For larger values the map goes into acycle in which
every second year the population returns to the same value. For even larger
values of X the map first goes (o a fOur-cyclc, then an cight-cyclc, unttl ac
some point (the Feigenbaum point) it goes into a completely chaotic state. In
the chaotic phase, a small uncerrainty in the inicial value of the population is
ampliﬁed as time passes, precluding predicrability. Feigenbaum constructed
a beautiful machematical theory of this scenario. This was the first theory of
the transition from regular periodic behavior to chaos. Chaos theory shows
how simple systems can have un predictable behavior.

Chaos signals have a white noise spectrum, not 1/f. One could say thac
chaotic systems are nothing but sophisticated random noise generators. [fthe
value of x {or the position of the regularly pushed swing) is plotted versus
time, the signal looks much like the noise shown tn Figure 7¢. It is random
and boring. Chaotic systems have no memory of the past and cannot evolve.
However, precisely at the “critical” point where the transition to chaos occurs,
there is complex behavior, with a 1/flike signal (Figure 7a). The complex

state 15 at the border between predictable periodic behavior and unpre-
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&i,ctaBIC chaos. Complexity occurs only atone very special point, and not for
che g’eneral values of A where there is real chaos. The complexity is not robust!
Gince all the empirical phenomena we have discussed-——fractals, 1/, fnoise, ca-
-mstrophes, and Zipf‘ s law—occur ubiquitously, they cannot depend on some
delicate selection of temperature, pressure, or whatever, as represented by the

arameter A Borrowing a metaphor from Dawkins, who got it from the En-
glish theologian William Palay, nature is operated by a “blind watchmaker”
who is unable to make continuous fine adjustments.

Also, simple chaotic systems cannot produce a spatial fractal structure
like the coast of Norway. In the popular literature, one finds the subjects of
chaos and fractal geometry linked rogerher again and again, despite the fact
that they have little to do with each other. The confusion arises from the fact
that chaotic motion can be described in terms of mathematical objects known
as stratige attractors embedded in an abstract phase space. These strange attrac-
tors have fractal properues, but chey do not represent geometrical fractals in
real space like those we see in nature.

In short, chaos theory cannot explain complexicy.

Self-Organized Criticality

The four phenomena discussed here——regularity of catastrophic events, frac-
tals, 1/fn0ise, and Zipf’s law——are so similar, in that they can all be expressed
as straight lines on a double logarithmic plot, thart they make us wonder if
they are all manifestations of a single principle. Can there be a Newton’s law,
f = ma, of complex behavior? Maybe self-organized criticality is that single
underlying principle.

Self-organized critical systems evolve to the complex critical state with-
out interference from any outside agent. The process of self-organization
takes place over a very long transient period. Complex behavior, whether in
geophysics or biology, is always created by a long process of evoluuon. It can-
not be understood by studying the systems within a time frame thac 15 short
compared with this evolurionary process. The phrase “you cannot under-
stand the present without understanding history” takes on a deeper and more

precise meaning. The faws for earthquakes cannot be understood just by
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studying earthquakes occurring in a human lifetime, but must take into ac-
count geophysical processes that occurred over hundreds of millions of years
and set the stage for the phenomena that we are observing. Biological evolu-
tion cannot be understood by studying in the laboratory how a couple of gen-
erations of rats or bacteria evolve.

The canonical example of SOC is a pile of sand. A sandpile exhibits
punctuated equilibrium behavior, where periods of stasis are interrupted by
intermittent sand slides. The sand slides, or avalanches, are caused by a
dominoeffect, in whicha single grain of sand pushesone or more other grains
and causes them to topple. In turn, those grains of sand may interact with
other grains in a chain reaction. Large avalanches, not gradual change, make
the link berween quantitative and qualitattve behavior, and form the basis for
emergent phenomena.

Ifthis picture is correct for the real world, then we must acceptinstability
and catastrophes as inevitable in biology, history, and economics. Because the
outcome is contingent upon specific minor events in the past, we must also
abandon any idea of detailed long-term determinism or predicrability. Ineco-
nomuics, the best we can do, from a selfish point of view, is to shift disasters to
our neighbors. Large catastrophic events occur as a consequence of the same
dynamics that produces small ordinary everyday events. This observacion
runs counter to the usual way of thinking about large events, which, as we have
seen, looks for speciﬁc reasons (For instance, a falling meteortie causing the ex-
uncrion of dinosaurs) to explain large cataclysmic events. Even though there
are many more small events than large ones, most of the changesofthe system
are associated with che large, catastrophic events. Self-organized criticalicy

can be viewed as che theoretical jusciﬁcation for catastrophism.

chapter 2

the discovery
of self-organized

criticality

In 1987 Chao Tang, Kurt Wiesenfeld, and I constructed the simple, proto-
typical model of self-organized cricicality, the sandpile model. Our.calcula-
tions on the model showed how a system that obeys simple, benign local
rules can organize ftself into a poised state that evolves in terms of Hlashing,
intermictent bursts rather than following a smooth path. We did not set out
with the intention of studying sandpiles. As with many other discoveries in
science, the discovery of sandpile dynamics was accidental. This chaprer
describes the events leading to the discovery. In hindsight, things could

have been much simple r;our thinking went through some quite convoluted

paths.

Science at Brool(llaven

We were working at Brookhaven National Laboratory, a

large government laboratory with approximately 3,000
employees, located at the center of Long Island, sixey




34 How Nature Works

miles east of New York City. It is famous for a string of discoveries in particle
physics, several of which were awarded the Nobel Prize. Most of this research
was performed on a large particle accelerator, the Alternate Gradient Syn-
chrotron (AGS). In 1962 Mel Schwartz and his collaborators Leon Leder-
man and Jack Steinberger discovered a new particle, the muon neutrino. The
neutrino that interacts with “muons” was shown to be different from the neu-
trino that interacts with the electron; thus the muon neutrino is a different
particle. This discovery contributed to the modern picture of particle physics,
where particles form generations, the muon neutrino belonging to the sec-
ond generation. Altogether, there are three known generations of particles.
Schwartz and his collaborators were awarded the Nobel Prize in 1988 for
their discovery. This work was followed shortly after, in 1963, by the discovery
ofa violation of the “CP" symmetry principle. According to which, the laws of
physics would stay the same if all particles were to be replaced by their
antiparticles, while all their motions were re placed by their mirror images, [t
was found that one particle, a neutral K meson, occasionally decays to two pi
mesons in violation of that principle. In 1980 the Nobel Prize was awarded to
Val Fitch and James Cronin for this discovery. In 1974 a team led by S.C.Ting
of MIT discovered the ]—particle, which put the quark modet of matter on a
firm foundarion. Their ex pertment at Brookhaven was che first indication ofa
new quark, che “charmed” quark. The Nobe! Prize was awarded for chis dis-
covery two years later, in 1976. A fourth Nobel Prize was awarded for a theo-
retical discovery. In the summer of 1956, T. D. Lee and C. N. Yang suggested,
prior to the experiments, that CP might be violated.
Complementing the big machines, Brookhaven National Laboratory has
a physics department similar to the ones at the major universities, in contrast
to other large national laboratories rhat are devored solely to running large
experiments. Thus Brookhaven has an excellent intellectual environment.
Most of the activities of the physics department are associated with the large
machines, butalso a good deal of individual experimental and theoretical re-
search takes place.
Ijoined asmall groupofcondensed-matter theorists asa postdoctoral fel-
low in 19741976, coming from Denmark, where I had graduated from the

Technical University. This fellowship allowed me to work on some of the
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world’s hottest research subjects at that time, critical phnnomena .assoqat.ei
wlr.h equilibrium phase transitions, and organic conducting materials, whic !
ca.n conduct electricity even though they contain nn rnetals snch as coppfer,
they ate plastic conductors. The work on phase transmnns was unportan; or
the later work on self-organized Criticality because it demonsnatec: fnw,
under very restrictive conditions, equilibrium systems can exhibit sca e-dree
behavior. The main experiments on organic conductors were performn at
Brookhaven's nuclear reactor by Gen Shirane, the world’s most accornphshecl
neutron-scatterer, and his collaborators, Alan Heeger and Tony Gariro frn;n
the University of Pennsylvania. By scattering neutron‘s off those materials,
they obtained informartion on structural transformanons. at low cernpe\r;—
rures. We were fortunate to have access to the hot exPertmental dara. Vi
Emety, who headed the theory group, and I constructed a theory of. the most
famous of those materials, known as TTE-TCNQ. Contrary to-earher specu-
lations by Heeger and Garito, who had discovered t‘hose mate‘nals, the trn;ns
formation was not associated with superconductiv:ty, the exciting capability
ofcertain metals to carry electrical currents without r851stanne at.low [nmper-
atures. Our results were reported in the most cited publication n solid state
physics of thatyear. Those were wonderful years. o .

After the first Brookhaven years, I returned to the University nf OP.m-
hagen. Among many other subjects, I became interested in the physxcthlf;m(l—
ple systems with chaotic behavior. Mogens Hggh ]ensen, Thnmas_ ' rF a
grandson of Niels Bohr), and I found universal behavior associated with fre-
quency locking of two periodic systems, such as a swing with one natural fre-
quency that is pushed periodically with -another frequency. In sor:e SC.T.S]:’
self-organized criticality involved a combination nf the pny51cshodequ; 1 g
rtum-critical phenomena involving very many pam_cles, which I ha ' sn; hted
at Brookhaven, and chaos theory for simple dynamlca[ systems, which I ha
studied in Copenhagen. o o )

In 1983 I gladly accepted a permanent posttion in Fhe group. Our gro‘ P
at Brookhaven is a shoestring operation compared with the large machine
groups, with only two SENIOr SCIENLISLS, 2 couple- nf postdoctoral research ;sso-
ciates, and a number of short- and long-term visitors. Perhaps because of our

' ic sci voidin
small size and relative obscurity, we have been able to do basic science, avoding
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the relentless pressure to switch to so-called applied science, which in the eyes
of science bureaucrats has a perceived immediate payoff. Our agenda is simply
to figure out how things work. In the past, we have had the freedom to do what-
ever we wanted to do, although our budget has been cut every year. Sadly, we
have not been able to hire new young scientists for permanent positions for
more than a decade. Ironically, this has happened during the most successful
pertod of the group, again because of our invisibility compared with the big
machines. Qur support s totally unrelated to our scientific accomplishments.
In principle, we could sit back, do nothing, and wait for our retirement wich-
out any financial consequences.

Contrary to the general public perception, good science today very often
comes from small groups consisting of one or two professors and a couple of
young collaborators. The dominance of mastodonic science, symbolized by
enormous parricle accelerators and huge space projects, is over, although there
are wonderful exceptions, such as the Hubble telescope. Ideas never occur col-
lecrively i the heads of 1,000 individuals. Take a look at some of the most re-
cent Nobel Prize winners in physics: Klaus von Klitzing of Germany for the
quantum Halleffectin semiconductors, which involves nothing more compli-
cated rthan measuring voltages and currents in semiconductors in an electric
field; Miiller and Bednorz of IBM Zurich for the discovery of high tempera-
ture superconductivity? Rohrer and Binnig, also of IBM Zurich, for invent-
ing the tunneling electron microscope; and DeGennes of Paris for theories of
polymer physics. All of this is physics at the hundred-thousand-dollar level,
carried out by small groups of imaginative scientists left alone to do whatever
they wish to do. Indeed, prizes were also awarded for big science throughout
those years, but that was mostly to reward big projects based on ideas that were
twenty or more years old! Good science is not necessarily expensive science.

Chao Tang came to Brookhaven in 1 985 from the University of Chicago,
where he had already distinguished himself as a graduate studenc by some
imaginative work on pateern-formation in crystal growth, and on chaos. Kurt
Wiesenfeld came from Berkeley where he had been doing similarly impres-
swve work on simple dynamical systems, some of which were showing chaotic
behavior. They were holding postdoctoral positions, similar to the one I had
n 1974=1976.
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Where Does 1/f "Noise” Come From?

We became obsessed with the origin of the mysterious phenomenon of 1 /f
€

1 “signal” is emi numerous
noise, or more appropriately, the 1 /f “signal” that is emitted by
4 .

rces on earth and elsewhere in the universe. We had endless discusstons tn
sou

the Physics coffee room, the intellectual centei of Brookha-ven..l;l'he;e i:as a
very playful atmosphere, which is crucial for 1nnovatii'e scientific chinking.
There would also be a constant stream of visitors passing through and eon-
tributing to our research by participating in the disciissions,-and sometimes
by collaborating more direcrly with us. Good science is hm sc:ienee.
Most attempts to explain 1/fnoise were ad bor theories for a smgle_syste[r:,
with no general a'pplicabiliry, which appeared unsausfacrory to us. Since the
phenomenon appears everywhere, we believed that there must be a general, ro-
bustexplanation. Systems with few degrees of freedom, like the angle and velo;—
ity of a single pendulum and equilibrium systeme cannot generally Sho_‘i-vhl 'f
noise or any other complex behavior, since fine-tuning is always necessar?i us,
we came to the conclusion that t/] 'f noise would have to be a cooperative phe-
nomenon where the different elements of large systems act together in sorne
concerted way. Indeed, all the sources of 1 /f noise were such large synterns Wi:el_
‘many parts. For instance, the fluctuations of the waeer level of the Nile inust
related to the landscape and weather pattern of Africa, which can cerrainly not
be reduced to a simple dynamical system. . f
One thought was that « / /fnoise could be related to the spatial structure of
matter. Systems in space have many degrees of freedom; one or more de§rees o”
freedom is assoctated with each point in space. The systems had to be open,
that is, energy had to be supplied from outside, since closed W.stems indwhich
energy would not be supplied wou Id approach an ordered oi- disordered equi-
librium state without complex behavior. However, at that time there were no

known general principles for open systems with many degrees of freedom.

Susan Coppersmith’s Dog Model

This was the situation when Susan Coppersmith, a scientist from Bell Labo-
ratories in New Jersey, visited us in late 1986. She had called me a few days
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before. “T have some new ideas that I am dying to discuss with someone. Can |
come and give a presentation to you at Brookhaven? There is nobody here 1o
talk to.” How flatrering! A little meeting was set up with only three people,
Kurt, Chao, and me, in the audience. Sue had been a postdoctoral fellow with
us at Brookhaven Lab a few years earlier.

In collaboration with Peter Littlewood, also at Bell Laboratories, she was
now working on charge density waves (CDW5) in solid systems. Charge den-
sity waves can be thought of asa periodic arrangement of electronic charges,
interacting with the regular lattice of atoms in a crystal. She had discovered a
stmple but remarkable effect.

We can think about CDWs in terms of a stmple metaphor. The sttuation
1S (very) roughly equivalent to a reluctant dog being pulled along a hilly sur-
face with an elastic leash (Figure ). At some point the dog will slip, and jump
from one bump to the next bump. Because there will still be tension in the
string after the jump, the dog will end up ata position near the topofa bump,
rather than sliding to the equilibrium position at the bottom of a valley. The
dog sits near the top for a’while until the tension has built up again to over-
come the dog’s friction, and the dog willjump again. This can be seen as a triv-
ial exam ple of punctuated equilibria, although with no large events.

Thisisa stmple nonequilibrium open system where energy is supplied
from the outside by means of the leash. Actually,a charge density wave can be
thought of as a string of particles (dogs), connected with springs, which is
pulled across a washboard by means of an external electric field acting as a
constant force. Sue’s work was based on computer simulations, but together
we all came up with a mathemarical theory. We studied rhe situation where
the chain would be pulled for some time, and then allowed to relax, and then
pulled again. The upshot of the analysis was that after many pulses, most of
the particles, just like the dog, would stay near the top of the potential between
the pulses. Obviously, particles sitting near the top are much more unstable
than particles at the bortom. It would take only a very small push to upset the
balance. We called the resulting state “minimally stable.” The result of the
theory could not possibly be more different from the behavior of, equilibrium
systems, where all the particles would end up near the bottoms of the valleys
in the washboard potential.
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Figure 9. Dog pulled with an elastic strlng. Every now and then the
clbg slips froma position near one tod, to a position near another top.

(Drawlng l)y Ricard Sole).

The basic reason for studying the system was a recent discovery of the
phase memory effect by Robert Fleming ac Bell Laboratories and George
Griiner of UCLA. The positioning of the particles near the tops, in the mini-
mally stable state, beaurifully explained thateffect,

Indeed, 1t appeared thar it was possible to say something general about
open nonequilibrium systems that would distinguish them completely from
equilibrium systems. Of course, the resulting conﬁguration has no compo-
nents of complexity whatsoever, no hints of fractals oc t/froise. Bucitwas the
first systematic analysis of large clynamical systems out ofequilibrium, ence
and for all demonstrating the furility of chinking about them in equilibrium

terms. New thinking was necessary.

On Couplecl Pendulums

Kurt, Chao, and T continued the study of “coupled” systems where many
patts interact with one another. Speciﬁcally. we looked at a necowork of cou-
pled torsion pendulums. Figure to shows a one-dimensional version where
the pendulums are connected along a line. Torsion pendulums can make ﬁJll
rotations around their point of support, not just oscillate around their equi-
librium like a clock pendulum. In contrast to previous studies of chaotic

behavior in single pendulums, we studied the limit where there were many
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Figure 10. Couplg& penclulums arranged on a chain. At regular nter-
vals, one penclulum. chosen rﬂndomly. 15 pushed so that 1t makes one revo-
lution. This puts pressure on the neig]\l)oring pendulums. We studied a 7
system where the pendulums were arrangecl on a two-dimensional gricl,
where each pendulum 1s connected with four neig]lbors. not two as
shown here.

coupled pendulums. On the computer we put many pendulumson a cegular
two-dimensional grid. Netghbor pendulums were connected with springs
like those you find in a clock. Energy was pumped into the system by selecting
one pendulum randomly and pushing it so that it would make one revolu-
tion. Because of the network of connected pendulums, this push would put
pressure on the neighbor pendulums by winding up the spring, perhaps forc-
ing one ot more of those pendulums also to rotate. The springs were chosen to
be sloppy; it would take several rotations of one pendulum before the force on
the neighboring pendulums would be strong enough to cause a rotation. Our
system was “dissipative.” If pushed once and left alone, a pendulum would
make only a single revolution and then stop because of friction. One might
think of the pendulums as rorating in syrup. This contrasts with systems such
as the solar system, which keeps moving forever because it is almost totally
frictionless.

To simplify the calculations we used a representation where we would
keep track only of the number of revolurions, called the winding numbers,

the pendulums would perform; we wouldn't bother with the exact patterns of
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roration. The tension of the springs would depend on the difference in the fusll
mumber of rotations between neighbor springs. Because of the connecting
springs, the winding numbets of neighbor torsion springs cannot differ too
much. The dynamics involved only integer numbers, not continuous real

numbers; thissim pliﬁcation greadly speeded up the calculations.

The Philosophy osting Simple
Models: On Spherical Cows

Why would we simulate a simple system ofoversimpliﬁed pendu[ums in-
stead of a realistic model of something going on in nature? Why don't we do
calculations on the real thing?

The answer 15 simple: there is no such thing as doing calculations on the
real thing. One cannot put a frog into che computer and simulate it in order
tostudy biology. Whether we are calcularting the orbitof Mercury circling the
sun, the quantum mechanics of some molecule, the weather, or whatever, the
computer 1s only making calculations on some mathematical abstraction
orginating in the head of the scientist. We make pictures of the world. Some
pictures are more realistic than others. Sometimes we feel tharour modeling
of the world 15 so good that we are seduced into believing that our computer
contains a copy of the real world, so that real experiments or observations are
unnecessary. | have fallen into that trap when stering too long in front of the
computer screen. Obviously, if we want our calculation to produce accurate
quanutative results, such as on the weather, or accurate predictions, such as of
the rate ofgloba[ warming, the demands are much more stringent than when
only qualitative behavior is asked for. This is true not only for com puter mod-
eling bur also for pen-and-paper analytical calculations like those performed
by the geneticists in the 1930s. The absence of com puters puteven more severe
limitations on the type of calculations that could be done. When scientists in
the past made theories of evolution, for exam ple, they made theories of sim ple
models of evolution. Instead of calculating the probabilities of reproduction
and survival in the real world, all of this information might be condensed into
asingle abstract number called fitness, which would enter the calculation. We

are always dealing with a model of the system, alchough some scientists would
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like us to believe that they are doing calculations on the real system when they
ask us to believe their resules, whether it be on global warming or the world
CCOnOmY.

Thelarge dynamical systems that we are interested in, like the crustof the
earth, are so complicated that we cannot hope to make accurate enough cal-
culations to predict what will happen next, even if we join the forces of all the
computers in the world. We would have to construct a full-sized model of
California in order to predict where and when the next large earthquake
would take place. This is clearly a losing strategy!

The physicist’s approach is complementary to that of an engineer, who
would try to add as many features to the model as are necessary to provide a
reliable calculation for some specific phenomenon. The physicist's agenda is
to understand the fundamental principles of the phenomenon under investi-
gation. He tries to avoid the speciﬁc derails, such as the next earthquake in
California. Before asking how much we have to add ro our description in
order to make it reproduce known facts accurately, we ask how much we can
throw out without losing the essential qualicative features. The engineer does
not have that luxury! Our strategy is to strip the problem of all the flesh until
we are left with the naked backbone and no further reduction is possible. We
try discard variables that we deem ircelevant. In this process, we are guided
by intuition. In the final analysis, the quality of the model relies on its abilicy
to reproduce the behavior of what it is modeling!

Thus, how would we physicists make a suitable model of, say, biological
evolurion? The biologist might argue that since there is sexual reproduction
in nature, a theory of evolution must necessarily include sex. The physicist
would argue that there was biology before there was sex, so we don't have to
deal with that. The biologist might point out that there are organisms with
many cells, so we must explain how multicellular organisms developed. The
physicist argues that there are also single-cell organisms, so we can throw
multicellular organisms out! The biologist argues that most life is based on
DNA, so that should be understood. The physicist emphasizes that there is
stmpler life based on RINA, so we don’t have to deal with DNA. He might
even argue that there must have been a simpler reproductive chemistry be-
fore RNA, so that we don't have to deal with thaceither, and so on. The trick
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is to stop the process before we throw out the baby with the bathwater. Once
«we have identified the basic mechanisms from the simple models, we leave it
to others to put more meat on the skeleton, to add more and more specific
details, if one so wishes, to check whether or not more derails modify the re-
sults.

In our particular study, the undeclying philosophy is that general fea-
rures, such as the appearance of large catastrophes and fractal structure, can-
not be sensitive to the particular details. This is the principle of universality,
We hope that important features of large-scale phenomena are shared be-
tween scemingly disparate kinds of systems, such as a network of interacting
economics agents, or the interactions between various parts of the crust of the
earth. This hope is nourished by the observation of the ubiquitous empirical
patterns in nature—fracals, 1 / f noise, and scaling of large events among
them—discussed in Chapter t. Since these phenomena appear everywhere,
they cannot depend onany speciﬁc detail whatsoever.

Universality is the theorist's dream come true. If che physics of a large
class of problems is the same, this gives him the option of selecting the simplest
possible system belonging to that class for detailed study. One hopes that a
system 1s so simple that it can be studied effectively on a computer, or maybe
laws of nature can be derived by macthematical analysis, with pen and paper,
from that stripped-down description or model. Simple models also serve to
strengthen our intuition of what goes on in the real world by providing sim-
ple metaphoric pictures.

The concept of universality has served us well in the past. It has scored a
couple of spectacular successes in recent years. Wilson's theory of phase tran-
sitions for which he was awarded the Nobel Prize proved its universality by
demonstrating that the basic properties of a system near a phase transition
had nothing to do with the microscopic details of the problem. It doesn’t mat-
ter whether we are dealing witha liquid—gas transition, a structural transition

where a crystal deforms, or a magneric transition where the little magnets or

Spins start pointing in the same direction. Wilson's calculations were based

on the Ising model, the simplest possible model ofa phase transition, and they
agreed with experiments on much more complicated real systems, such as
magnecs and fluids.
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Similarly, Feigenbaum's studies of the transition to chaos was basedon a
“map” that can only be seen as a caricature of a real predator-prey ecological
system. I don’c think that either Feigenbaum or May ever claimed thar the
map describes anything in real biology. Feigenbaum argued that near the
transition to chaos the dynamics had to be the same for all systems under-
going a transition to chaos through an infinite sequence of bifurcarions at
which the periodicity would be doubled. The contrast between the sim plicity
of the model, and the depth of the resulting behavior is astonishing. Although
Feigenbaum's theory was based on a grossly oversimpliﬁed model, experi-
ments on many kinds of complicated systems have beautifully confirmed ic.
In parucular, Albert Libchaber in Paris showed that a liquid with rotating
convective rolls would undergo a series of transitions and ulcimarely goestoa
chaotic state following Feigenbaum’s law. Another sim pler example 1s the
swing,or pendulum, being pushed repeatedly ata constant rate, which I stud-
ied with Bohr and Jensen. Again, real-world behavior, representing real mea-
surable quantities, could be predicted from simple model calculations. The
phenomenon is quite universal. _

Thus, the scientific process 1s as follows: We describe a class of phenome-
non in nature by a simple mathematical model, such as the Feigenbaum map.
We analyze the model either by mathematical analytical means, with pen and
paper, or by numerical simulations. There is no fundamencal difference be-
tween these two approaches; they both serve to elucidate the consequences
(predictions) of the simple model. Often, however, simulations are easier than
mathematical analysis and serve to give usa quick look at the consequences of
our model before starting analytical considerations. Computational physics
does not represent a “third” way of doing science, in addition to experiments
and theory. There is no fundamental difference, except that it is more conve-
nient, compact, and elegant to have a closed mathematical formula rather
thana computer program. We then compare the ﬁndings with experiments
and observations. Ifthere is general agreement, we have discovered new laws of
nature operating at a higher level. If not, we haven't. The beauty of the model
can be measured as the range between its own stmplicity and the complexity
of the phenomena that it describes, that is, by the degree to which it has al-

lowed us to condense our description of the real world.
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Without the concept of universality we would be in bad shape. There
would be no fundamental “emergent” laws of nature to discover, only a big
mess. Of course, we have to demonstrate that our models are robust, or insen-
sicive to changes, in order to justify our original intuition. If, unforcunately, it
turns out that they are not, we are back to the messy situation where detailed
cngineering-fype models of the highly complex phenomena is the only possi-
ble aPProach—the weatherman'sapproach.

The obsession among physicists to construct simplified models is well il-
lustrated by the story about the theoretical physicist asked to help a farmer
raise cows thatwould produce more milk. Fora long rime, nobody heard from
him, buteventually he emerged from hiding, in a very excited state. “I now have
figured it all out,” he says, and proceeds to the blackboard with a piege ofchalk
and draws a circle. “Consider a spherical cow. . .." Here, unfortunately, it ap-

pears that universality does not apply. We have to deal with the real cow.

The Pendulums Become Criticell

This is why we were finding ourselvesdoing computer simulationson something
as esoteric as networks.of coupled pendulums—and not realistic models of
earthquakes or whatever. If the reader has difficulties visualizing the system of
coupled pendulums, so much the betree—itwill only serve o illustrate the value
ofhaving good metaphors. The pendulumsare notgood enough metaphors, We
too had great difﬁculty grasping what was going on, and it was still o messy.
Ifthe pendulums were pushed in random directions, one ata time, nothing
mteresting would happen. Mostof the pendulums would be near the down po-
sition. However, we realized thatifwe always pushed the pendulums in the same
direction, say clockwise, there would be an increased tendency for the pendu-
lums to affect each other. The springs connecting the pendulums would slowly
be wound up and store energy. As the process of pushing a single pendulum ata
time continued, more and more pendulums would stay near the upward posi-
tion rather than the downward position. Because of the increased instability of
the pendulums, there would be chain reactions caused by a domino effect
Pushing a single pendulum might cause others to rotate. How far would this

domino process continue? Obviously, if we started from the position where all
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the springs were relaxed, there would be no way that pushinga single pendulum
once would cause other pendulums to rotate. But suppose the process of pump-
ing up the pendulums went on for a very long time. What would sec the limitof
the chain reaction? What would be the natural scale of the disturbances? How
many pendulums could be turned by a single push?

The idea popped up that maybe there was no limit whatsoever! It ap-
peared that there was essentially nothing in the system that could possibly
define a limit! Maybe, even if the system was dissipative with lots of friction,
the constant energy supply from pushing the pendulums might eventually
drive the system to a state where once a single pendulum started rotating
somewhere, there would be enough stored energy to allow a chain reaction to
goon forever, limited only by the large total number of pendulums‘.’

Chao Tang programmed this into a computer. He chose a small system
with pendulums on a grid of size 50 by 50,2 total of 2,500 pendulums. Each
pendulum was connected with its four neighbors, in the up, down, left, and
right directions. Starting from having all pendulums in the down direction,
one arbitrary pendulum would be wound up by one revolution. This would
put more pressure on the neighbors. Then another pendulum would be cho-
sen, and so on. For a while there were only single rotations, butat some point
one spring would be wound up enough ro trigger another pendulum to ro-
tate. Continuing further, atsome poinc there would be enough energy stored
in the springs that there would be large chain reactions, where one pendu-
fum would trigger the next by a domino effect. This process is called an
avalanche. The avalanches would become bigger and bigger. Even tually, after
thousands of events, they would grow no further, As the simulation contin-
ued, there would be a stream of avalanches, some small, some intermediate,
and a few big.

We measured how many avalanches there were of each size, just like the
earthquake scientists had measured how many earthquakes there were of each
magnitude. The size of an avalanche was measured as the rotal number of rota-
tions following a single kick. There were many more small ones than large
ones. Figure 13 shows the resulting histogram. The x-axis shows the size of the
avalanches. The y-axis shows how many avalanches there were of that size. We

used log-log plots, just like Johnston and Nava in Figure 2,and Zipf in Figure 8.
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Egure 11 Slze d;stribution of avalanches n systems of couple& pendulums
or, equivalently. in the sandpile model. The ﬁgure shows how marny avalanches
there are of each size, on a logarit}tmic plot. The distribution 15 a power law
with exponent 11. This s our very farst plot. By perform;ng longer simula-
tions on Bigger system one can extend the range of the power law.

Qurdarta fall approximately on a straight line, which indicates that the num-

ber of avalanches of size s is given by the simple power law
Ny =57

whete the exponencr, defined as che slope of the curve, is approximately equal to
v The pendulums obeyed the Gutenberg—Richter power law for earthquakes!
At the lower end, the straight line is limited by the fact that no avalanche can be
smaller than one pendulum rotation. At the upper end, there is a cutoff because
noavalanche can be bigger than one with all the pendulums rotating, The scat-

tering of points around the straight line are statistical fluctuations, just like
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in real experiments. Some points are above the line, some below. If we let the
simulation continue longer and longer, these fluctuations become smaller and
smaller, just like the ratio of sixes you getwhen you throw a dice will converge to-
ward 1/6 as the number of throws increases.

The system had become “critical”! There were avalanches of all sizes just
as there were clusters of all sizes at the “critical” point for equilibrium phase
transitions. But no tuning was involved. We had just blindly pushed the pen-
dulums. There is no temperature to regulate, no A parameter to change. The
simple behavior of the individual elements following their own simple local
rules had conspired to create a unique, delicately balanced, potsed, global sic-
uacion in which the motion of any given element might affect any other ele-
mentin the system. The local rule was sim ply a specification of the toral num-
ber, , of revolutions the four neighbors should perfoi-m, to induce a single
revolution of a given pendulum. The system had self-organized into the critical point
without aty external organizing force. Self-organized criticality (SOC) had been
discovered. It was as if some “invisible hand” had regulated the collection of
pendulums precisely to the point where avalanches of all sizes could occur.
The pendulums could communicate throughout the system.

Once the poised state has been reached, the “criticality” is similar to thar
ofa nuclear chain reaction. Su ppose you have a collection of radioacrive atoms
emitting neutrons. Some of those neutrons might become absorbed by other
atoms, causing them to emit neutrons of their own. A single neutron leads to
an avalanche. If the concentration of fissionable atoms is low, the chain reac-
ton will die our very soon. If the concentration is high, there will be a nuclear
explosion stmilar to thar in an atomic bomb. At a unique critical concentra-
tion there will be avalanches of all sizes, all of which will eventually stop.
Again, one has to “tune” nuclear chain reacrion by choosing precisely the cor-
rect amount of radioactive material to make it cricical. In nuclear reactors this
tuning is very important and is carried out by inserting neutron-absorbing
graphite rods. In general the reactor is notcritical. There is absolutely no self-
organization involved in a nuclear chain reaction, so in this all-im portantas-
pect the situation is entirely different.

Fermi'steam, achieving criticaliry at their nuclear reactor in Chicago in 1940,

could not have been more excited than we were. Criticali[y, and therefore com-

. H
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chapter 3

the .
sanclplle

paradigm

The importance of our discovery of the coupled-pendulums case of self-
organized criticality was immediately obvious to us. An open dissipative sys-
tem had nacurally organized itselfinco a critical scale-free state wich avalanches
ofall sizes and all durations. The statistics of the avalanches follow the Guten-
berg—Richter power law. There were small events and farge events following
the same laws. We had discovered a sim ple model for complexity in nature.
The variability that we observe around us mightreflect parts of a universe
operating at the self-organized critical state. While there had been indica-
tions for some time that complexity was associated with criticality, no robust
mechanism for achteving the ccitical state had been proposed, nor had
one been demonstrated by actual calculation on a real mathematical
model. Of course, this was only the beginning. For instance, we
still had to show thart the activity has an 1 / 'f-like signal, and
that the resulting organization had a fractal geometrical

sttucture. We were only at the beginning.
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Pechaps our ultimate understanding of scientific topics is measured in
terms of our ability to generate metaphoric pictures of what is going on.
Maybe understanding is coming up with metaphoric pictures. The physics of
our messy system of pendulums was far from transparent. Qur intuition was
poor. A couple of months after the discovery, it struck us that there was a sim-
pler picture that could be applied o our self-organized critical dynamics. By
a change of language the rotating pendulums could be describing toppling
grains of sand in a pile of sand (Figure 1). Instead of counting revolutions of
pendulums, we would count toppling grains at some position in the pile. Al-
though the mathemarical formulation was exactly the same for the sand
model as for the pendulum model, the sand picture led to a vastly improved
intuitive understanding of the phenomenon. Sandpiles are part of our every-
day experience, as any child who has been playing on the beach knows. Rotat-
ing coupled pendulums are nor. Ina mysterious way, the physical intuition
based on the sandpile metaphor leads to better understanding of the behavior
of a purely mathematical model. Usually we achieve physical understanding
from macthemartical analysis, not the other way around.

Burt before discussing the mathemaucal formulation of our model, let us
recall the sandpile experiment in Chaprer 1. Consider a flat cable, onto which
sand is added slowly, one grain at a ume. The grains might be added at ran-
dom positions, or they may be added only atone point, for instance at the cen-
ter of the table. The fart state represents the general equilibrium state; this
state has the lowest enecgy, since obviously we would have to add energy to re-
arrange the sand to form heaps of any shape. If we had used water, the system
would always return to the flac ground state as the water would stmply run off
the edge of the table. Because the grains rend to get stuck due rostatic friction,
the landscape formed by the sand will not automatically revert to the ground
state when we stop adding sand.

Initially, the grains of sand will stay more or less where they land. As we
continue to add more sand, che pile becomes steeper, and small sand slides or
avalanches occur. The grain may land on top of other grains and topple to a
lower level. This may in turn cause other grains to topple. The addition of a
single grain of sand can cause a local disturbance, but nothing dramatic hap-

pens to the pile. In particular, events in one part of the pile do not affecc sand
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gfains in more distant parts of the pile. There is no global communicétion
within the pile at this stage, just many individual grains of sand.

As the slope increases, a single grain is more likely to cause other grains to
wopple. Eventually the slope reaches a cerrain value and cannot increase any
further, because the amount of sand added is balanced on average by the
amount of sand leaving the pile by falling off the edges. This is called a sta-
rionary state, since the average amount of sand and the average slope are con-
stant in time. It is clear that to have this average balance between the sand
added o the pile, say, in the center, and the sand leaving along the edges, there
must be communication throughout the entire system. There will occasion-
ally be avalanches chat span the whole pile. This is the self-organized critical
(SOC) state.

The addition of grains of sand has transformed the system from a state in
which the individual grains follow their own local dynamics to a critical state
where the emergent dynamics are global. In the stationary SQOC state, there 1s
one complex system, the sandpile, with its own emergent dynamics. The
emergence of the sandpile could not have been anticipated from the proper-
ties of the individual grains.

The sandpile ts an open dynamical system, since sand 1s added from our-
side. Ithas many degrees of freedom, or grains of sand. A grain of sand landing
on the pile represents potential energy, measured as the height of the grain
above the table. When the grain topples, this energy is transformed into ki-
netic energy. When the toppling grain comes to res, the kineric energy is dis-
sipated, that is, transformed into heat in the pile. There is an energy flow
through the system. The critical state can be maintained only because of en-
ergy in the form of new sand being supplied from the ousside.

The critical state must be robust with respect to modifications. This is of
crucial importance for the concept of self-organized criticality to have any
chance of describing the real world; in fact, this is the whole idea. Suppose that
after the same system has reached its critical stationary state we suddenly start
dropping wetsand instead of dry sand. Wet sand has greater friction thandry
sand. Therefore, for a while the avalanches would be smaller and local. Less
material will leave the system since the small avalanches cannot reach the edge

of the table. The pile becomes steeper. This, in turn, will cause che avalanches
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to grow, On average. Eventualiy we will be back to the critical state with sys-
tem-wide avalanches. The slope at this state will be higher than the original
ones. Similarly, if we dry the sand, the pile will sink to a more shallow shape by
temporarily shedding larger avalanches. If we try o prevent avalanches by
putting local barriers, “snow” screens, here and there, this would have a simi-
lar effect: for a while the avalanches will be smaller, but eventually the slope
will become steep enough to overcome the barriers, by forcing more sand to
flow somewhere else. The physical appearance of the pile changes, but the dy-
namics remain critical. The pile bounces back w a critical state when we Iy to

force it away from the critical stace.

The Sandpile Model

We have defined the physics, butso far everything is simply a productofimag-
wation, mixed with some intuition from actual experience. How do we go
from here to make a representation, a model, that reproduces these features?
The sandpile model that Kure, Chao, and I studied s easy todefine and simu-
late on the computer. It is so simple chat readers who possess some computer
literacy can set one up on their own PCs. Readers who do not play with com-
puters can make a mechanical representation using Lego blocks.

The table where the sand isdro pped is represented by a two-dimensional
grid. At each square of the grid, with coordinates (x,y), we assign a number
Z(x,y), which represents the number of grains presenc at that square. For a
table of size L = 100, the coordinates x and y are between 1 and 100. The total
number of sites 1s L X L. We are using “theoretical physicist'ssand,” with ideal
grains that are regular cubes of size 1, which can be stacked neatly on top of
one another, not the irregular complicated ones that you find on the beach.

The addition of a grain of sand to a square of the grid is carried out by

choosing one site random[y and increasing the height Z at thatsite by
Z{xy)= Z(x,y) + 1.

This process is repeated again and again. To have some inte resting dynam-
ics, we apply arulethatallowsa grainofsand to shift from one square [o another,

a"toppling rule.” Whenever the height Z exceeds a critical value Z_, that may ar-
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pitrarily be set, say, to 3, one grain of sand is sent to each of the four neighbors.
“Thus, when Z reaches 4, the heightat thatsite decreases by four units,

Z(xy)— Z(x,y) — 4

for Z(x,y) > Z ., and the heights Z at the four neighbor sites go up by one

unic,

Zixx 1, y)=Z(xt1y)+ 1, Z{xyt)>Z(xyt) + ¢

The oppling process is illustrated in Figure 12, If the unstable site hap-
pens (o be at the bou ndary, where x or yis 1 or 100, the grains of sand simply
leave the system; they fall off the edge of the table and we are not concerned

with them any longer.
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F;gure 12. Illustration oftoppling avalanche 1n a small sandpile. A
grain falling at the site with heigl\t 3 at the center of the grid leads to an
avalanche composed of nine toppling events, with a duration of seven
up&ate steps. The avalanche has a sizes= 9. The black squares indicate
the eight sites that toppled. One site topplecl twice.
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These few simple equations completely define our model. No mathemas-
ics more complicated than adding and subtracting numbers between 1 and 4
is needed. Nevertheless, the consequences of these rules are horrifyingly com-
plicated, and can certainly not be deduced from a simple inspection of the
equations, which represent the local dynamics ofeach of our sand grains, We
follow the general procedure outlined in Chapter 2, and start studying the
model by direct computer simulations.

This physicists’ sandpile is a gross oversimplification of what really hap-
pens. First, real grains have different sizes and shapes. The instabilities in a
real sandptle occur not only at che surface but also through the formation of
cracks in the bulk. The toppling depends on how the individual grains lock
together. Once a grain is falling, its motion is determined by the gravity freld,
which accelerates the grain, and the interaction with other grains, which
tends to decelerare the motion. Stopping the motion depends on many fac-
tors, such as the shape of the grains it bumps into and its velocity at that point,
and not just the height or slope of the pile at the neighbor points. One could
go on and on with objections [ike chis. One quickly realizes that it isa losing
strategy to make a realistic model of the sandpile, which at first glance mighe
have seemed a reasonably simple object. So why is the model acceptable atall?
Its validity is based on the intuition thar the model conrains the essencial
physics, namely thatgrains interact and may causceach other to topple. That
this is indeed correct can be justified (or falsified) only a posteriori by com-
paring with experiments.

Second, we are not particularly interested in sand. We hope that the sand
dynamics that we observe are general enough that they can be applied ro a
much larger class of phenomena,

Peter Grassberger. a computational physicist ac the Universiry of Wup-
pertal, Germany has come up with an amusing representation of the model.
He asks us to think about a farge office where burcaucrats sit at tables orga-
nized in rows (Figure 13 ). Every now and then a piece of paper from the out-
side enters the desk of a random bureaucrar. He does not deal with it until he
finds too many pieces of paperon hisdesk. He then sends one piece of paper to
each of his four neighbors. Everybody follows this rule, except those who are

placed along the walls, who simply throw the paperout the window. Jumping
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Egure 13. Office version of the snn&pile model. At regulsr intervalsa
piece of paper lands on the desk of a random bureauerat. When a bureau-
crat ﬁnds four or more s]teets of paper on }1is desl{ he sen&s one s}ieet to
each of his neig}lbors. or out tlie window. (Courtesy ofPeter Grassberger.)

forward a lictle bit, we shall see that a single piece of paper entering the ofhce
can lead to a bureaucratic catastrophe where millions of transfers of paper
take place (if the office is large enought). Each bureaucrat may perform many
transactions within such an avalanche.

In cthe beginning of the process, where all the heights are low, there are no
unstable sites. All sites have Z less than 3, so the sand stays precisely where 1t
happens to land. After many steps of adding a single grain to a square of the
grid, the hetghe somewhere must ncccssarily exceed 3, and we have the first
toppling event. It is unlikely that che height at any of the four neighbor
squares exceeds 3 this soon, so there will be no further activity of toppling
grains. As the process continues, it becomes more likely tharac leastone of the
neighbors will reach its critical height, so the first toppling event induces a
second event. One toppling event leads to the nexg, like falling dominos. As
more sand is added, there will be bigger and bigger landslides, or avalanches,
although there will still also be small ones.

Figure 12 shows a sequence of toppling events in a very small system. The
numbers in the squares represent the heights. A grain of sand lands on a sige
with height 3, causing thacsite to topple. Two of the neighbor sites had Z = 3,

so those owo sites topp[c next, at the second time step, sending a total of eight
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grains to their neighbors, including two grains to the original site. Eventually
the system comes to rest. We notice that there were precisely nine topplings, so
that avalanche had size s = 9. We also monitor the rotal duration, that is, the
number of update steps,f = 7, of that avalanche.

Evencually the entire sandpile enters into a stationary state where the
average height of all sites does not increase further. The average hewghe is
somewhere between 2 and 3. The pile can never reach the highest possible
stable state, where all che heights are 3, since long before that simple state is
reached the pile has broken down due to large avalanches. We can monitor
this by counting the total number of grains in the pilearall times. In che sta-
tionary state, most avalanches are small and do not reach the edge, so they
cause the pile to grow. This is precise[y compensated by fewer, and generally
larger, avalanches that reach the edge and cause many grains of sand to leave

" the pile.

Plare 1a shows a conﬁgu ratton tn che stationary state, just after the com-
pletion of an avalanche for a very large pile. Here, instead of the numbers, a
colorcodeisused. Red s Z= 3,blueis Z = z,greenisZ = r,and grayisZ = o.
The picture looks like a big mess, with no organized structure wharsoever.
But nothing can be furcher from the cruch. The pile has organized itself
INIo a highly orchestrared, susceptible state through the process of repeat-
edly adding sand and having avalanches cravel through the pile again and
again.

We can realize the intricace properties of the configuration of sand, not
by directly inspecting the colors but by dropping one more grain of sand. ifa
“red” ste is hig, this triggers an avalanche. Plate b shows what has happened
after a few time steps. The light blue area represents all the grains that have

fallen. The yellow and white spots represent active sites that are about to top-
ple, where Z> 3. The next picture shows the situation a licele later, where the
avalanche has covered a larger area. Eventuaily the avalanche comesto a stop
after approximately half the sites in the pile have toppled at least once. Most
sites have actually toppled several times. The particular configuration at the
end of the avalanche is very different than the one we started out with.

This was a very big avalanche. More often than not the avalanches are

smaller. We now follow the same procedures as the geophysic tsts when mak-
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ing statistics of earthquakes. By successively adding sand after each avalanche
has stopped we generate a large series of avalanches, say 1 million avalanches.
We then make a “synthetic” earthquake catalog by counting how many
avalanches there are of each size. The “magnitude” of avalanches is the loga-
rithm of the size of the avalanche. As usual, we plot the logarithm of the num-
per of avalanches of a given magnitude versus that magnitude.

The number of avalanchesof each size for a system of linear size 5015 plot-
ted in Figure 11 on p. 47, which shows data from our very ficst sandpile. The
straight line indicates that the avalanches follow the Gutenberg-Richeer
power law, just like the real earthquakes in Figure 2, although the slopes are
different. We do not have to wait millions of years to generate many earthquakes,
so our statistical fluctuations are smaller than those for earthquakes, where we
must deal with the much smaller number that nature has generated for us. The
exponentT of the power law, that is, the slope of the curve in Figure 11, was mea-
sured to be approximately 1.1 The power law indicates chat the stationary
state is critical. We conclude that the pile has self-organized into a critical
state. '

One can show, by analyzing the geometry of the sand pi[c, thatthe proﬁlc
of the sandpile is a fracral, like Norway’s coast. The avalanches have ca rved out
fractal structures in the pile.

The power law also indicates that the disceibution of avalanches follows
Zipf's law. Instead of plotting how many avalanches there are of each size, we
could equally well plot how large the biggest avalanche was {the avalanche of
“rank” 1), how large the second biggestavalanche, ofrank 2 was, how large the
tenth biggest avalanche was, and so on, precisely the same way that Zipf plot-
ted the ranking of cities. This is just another way of representing the informa-
tion from the original power law. The straight line shows chat the sandpile dy-
namics obey Zipt's law.

Our simple model cannot by any stretch of the imagination represent the
formation of ceal cities in a human society or the process by which James Joyce
wrote Ulysses, where we are dealing with humans, not sand grains. Neverthe-

less, one mighe speculate thac Zipf’s law indicates that che world population
has organized itself into a criucal stace, where cities are formed by avalanches

of human migrations.
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We had to check that the criticality is robust with respect to modifi-
cations of the model. The power law should prevail no matter how we modify
the sandpile. We tried a long sequence of different versions. Instead of having
the same critical height equal to 3, a version where the critical height varies
from site to site was tried. Snow screens were simulated by preventing sand
from falling between certain neighbor sites, selected randomly, by having the
sand arranged on a triangular grid instead of the square grid. We also tried
adding grains of different sizes, that is, we increased Z not by unity when
grains are falling buc by some random number between o and 1. We massaged
the model so that a random amount of sand topples when the site becomes
unstable. We selected the sites to which the sand would opple in a random
way, and not to the nearest neighbors. In all cases, the pile organized itselfinto
a critical state with avalanches of all sizes. The criticali'ty was unavoidable.

One might speculate that the criticality iscaused by the randomness of the
way that the system is driven—we add new grains at random posttions. In fact,
this is not importantatall. We can drive the system in a deterministic way with
no randomness whatsoever, with all information abour the system at all times
encoded in the initial condition: ler the Zs represenca real variable instead of an
integer one. Start with a configuration where all the Zs ace subcricical, that is,
less than 4. Increase all Zs at a very small rate. This corresponds to tilting the
sandpile slowly. Atsome point, one Z will become unstable and topple accord-
ing to the rule defined above, and a chain reaction is initiated. The process is
continued ad infinicum: there will eventually be a balance between the rate of
changing the slope and the rate of sand falling off the edges. We get the same
power law distribution as before. Since the whole history of the pile in this case
was contained in the initial condition, the phenomenon of SOC is essentially a
deterministic phenomenon, just like the chaos studied by Feigenbaum.

The fact that the randomness of adding sand does not affect the power
law indicates that the randomaess is irrelevant for the complex behavior we
are observing. This fact is important to realize when studying much more
complicated systems. Economics deals with the more or less random behavior
of many agents, whose minds were certainly not made up at the beginning of
history. Nevertheless, this randomness does not preclude the system’s evolv-

ing to the delicate critical state, with well-defined statistical properties. Thisis
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3 fascinating point that is difficulc to grasp. How cana system evolve to an or-
ganized state despite all the obvious randomness in the real world? How can
the Particular conﬁguration be contingent on minor details, but the critical-

ity rotally robust?

Life in the Sanclpile ‘World

The dynamics of the nonequilibrium critical state could hardly be more
different than the quiet dynamics of a flat beach. How would a local observer
cxperiente the sttuation? During the transtent stage, when the sandpile was
relatively shallow, his experience would be monotonous. Every now and then
there would be a small disturbance passing by, when a few grains topple in the
neighborhood. If we drop a single grain of sand at one place instead of an-
other, this causes only a small local change in the conﬁguration. There 1s no
means by which the disturbance can spread system-wide. The response to
small perturbations is small. In a noncritical world nothing dramatic ever
happens. [t is easy to be a weather (sand) forecaster in the flatland of a non-
critical system. Not only can he predicc what will happen, but he can also un-
derstand it, to the limited extent that there is something to understand. The
action atsome place does not depend on events happening long before at far-
away places. Contingency is ireelevant.

Once the pile has reached the stationary crirical state, though, the sttua-
tion is entirely differenc. A single grain of sand might cause an avalanche in-
volving the entire pile. A small change in the configuration might cause what
would otherwise be an insigniﬁcant event to become a catastrophe. The sand
forecaster can still make short time predictions by carefully identifying che
rules and monitoring his local environment. If he sees an avalanche coming,
hecan predict when itwill hit with some degree ofaccu racy. However, he can-
not predict when a large event will occur, since this is contingent on very
minor details of the configuration of the entire sandpile. The relevance of
contingency in the self-organized critical state was first noted by Maya
Paczuskt, then a research fellow in our group, who suggested that the massive
contingency in the real world could be understood as a consequence of self-

organized criticality.
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The sand forecaster’s situarion is similar to thatof the weatherman in our
complex world: by experience and data collection he can make “weather” fore-
casts of local grain activity, but this gives him little insight into the “climate,”
represented by the stacistical properties of many sand slides, such as their size
and frequency.

Most of the time things are completely calm around him, and 1t might
appear to him that he is actually living in a stable equilibrium world, where
nature is in balance. However, every now and then his quiet life is interrupted
by a punctuation—a burst of activity where grains of sand keep tumbling
around him. There will be bursts of all sizes. He might be tempred to believe
thathe is dealing with a local phenomenon since he can relate the acuvity that
he obsecves to the dynamical rules of the sand toppling around him. Buthe is
not; the local punctuation that he observes isan integrated partofa global co-
operative phenomenon.

Pacts of the critical system cannot be understood in isolation. The dy-
namics observed locally reflect the fact thaticis partof an entire sandpile. If
you were sitring on a flat beach instead of a sandpile, the cules that govern the
sand are precisely the same, following the same laws of physics, bur history has
changed things. Thesand is the same but che dynamics are different. The abil-
ity of the sand to evolve slowly isassociated with its ca pability of cecording his-
tory. Sand may contain memory; one can write letcers in the sand thatcan be
read a long time later. This cannot happen in anequilibrium system such as a
dish of warer.

In che critical state, the sandpile is the functional unit, not the single
grains of sand. No reductionist approach makes sense. The local unitsexistin
their actual form, characrerized for instance by the local slope, only because
they are a part of a whole. Studying the individual grains under the micro-
scope doesn'tgive a clue as towhat is going on in the whole sand pile. Nothing
in the individual grain of sand suggests the emergent properties of the pile.

The sandpile goes from one configuration to another, not gradually, but
by means of catastrophic avalanches. Because of the power law statistics, most
of the topplings are assoctated with the large avalanches. The much more fre-
quent small avalanches do not add up to much. Evolution of the sandpile

takes place in terms of revolutions, as in Karl Marx's view of history. Things
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happen by revolutions, not gradually. precisely because dynamical systems
are poised ac thecritical state. Self-organized criticality is nature's way of mak-
ing enormous transformations over short time scales.

In hindsight one can trace the history ofa speciﬁc large avalanche thatoc-
curred. Sand slides can be described in a narrative language, using the mech-
ods of history rather than those of physics. The story thar the sand forecaster
would tell us goes something like this: _

"Yesterday morning at 7 AM,, a grain of sand landed on site A, with coor-
dinates(5,12). Thiscaused a oppling tosite Bat (5,13 ). Since the grain of sand
resting at B was a[ready near the limit of stability. this caused further top-
plings to sites C, D, and E. We have carefully monitored all subsequentdtop—
plings, which can easily be explained and understood from the known laws of
sand dynamics, as expressed in the simple equations. Clearly, we could have
prevented this massive catastrophe by removing a grain of sand at the initial
triggering site. Everything is understood.”

However, this is a flawed line of thinking for wo reasons. First, the fact
thar this parricular evencled to a catastrophe depended on the very details of
the structure of the pile at chat particular time. To predict the event, one
would have to measure everything everywhere with absolute accuracy, which
is impossible. Then one would have to perform an accurate computation
based on this information, which 1s equally impossible. For eacthquakes, we
would have to know the derailed fault structure and the forces that were act-
ing on those faulcs everywhere mna very latge region, like California. Second,
even if we were able 1o identify and remove the triggering grain, thece would
sooner ot later be another catastrophe, originating somewhere else, perhaps
with equally devastating consequences.

But mostimportantly, the bistorical account does not provide much insight into what
is going on, despite the fact that each step follows logically from the previous step. The general
patterns thatare observed even locally, including che existence ofcatastrophic
events, reflect the fact that the pile had evolved into a critical state during its
entire evolutionary history, which took place on a much longer time scale
than the period of observation. The forecaster does not understand why the
acrangement of grains happened to be precisely such chat it could accommo-

datea large avalanche. Why couldn'tall avalanches be small?
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There is not much thatan individual can do to protect himself from these
disasters. Even if he is able to modify his neighborhood by flattening the pile
around him, he might nevertheless be swept away by avalanches from far away,
through no fault of his own. Fate plays a decisive role for the sand pile inhabi-
tant. In contrast, the observer on the flat noncritical pile can prevent the small
disasters by simple local measures, since he needs information only about his
neighborhood in order to make predictions, assuming that he has informa-
tion on the acrival of grains to the pile. [tis the criticality that makes life com-
plicated for him.

The sandpile metaphor has reached well beyond the world of physicists
thinking about complex phenomena; it contains everything—cooperative
behavior of many parts, punctuated equilibrium, contingency, unpredictabil-
ity, fate. It is a new way of viewing the world Vice President Al Gore says in his
book Earth in the Balance:

The sand pile theory——self-organized criticality—is rresistible as a
metaphor; one can begin by applying it o the developmental stages of
human life. The formartion of tdentity 1s akin to the formation of the
sand pile, with each person being unique and thus affected by events
diﬂ'erently. A personality reaches the critical state once the basic con-
tours of its distincrive shape are revealed; then the impacrofeach new ex-
pertence reverberates throughout the whole person, borh dirccrly, at the
tme 1t occurs, and indirectdy, by setring the stage for future change. ...
One reason [ am drawn o this theory is thac it has helped me understand
changen my own life,

Maybe Gore is stretching the point too fac. On the other hand, perhaps even
the most complicated phenomena on earth—humans with brains and per-
sonaliy—do reflect part of aworld operating at the critical state. We shall re-

turn o these issues in the context of biological evolution and brain function
in later chapters.

Can We Calculate the Power Laws
with Pen and Paper?

The sandpf[e model s utterly simple to describe. It takes onlya couple of lines

of text to define the model completciy. Why do we have to go through the
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gomputer simulation? The computer calculation does not prove anything in
+the mathematical sense. Can’t we make a simple pen-and-paper calculation
chat will tell us what will happen without the simularion? For instance, can
we calculate the exponent T for the distribution of avalanches? The model is so
simple and transparent that one would expect to be able to calculate every-
thing. For other complicated phenomena, like the transition to chaos, or
Phase transitions in equilibrium systems, scienusts like Feigenbaum and
Wilson were eventually able to create beautiful analyrical theories providing
deep insight into the origins.

Surpristngly, we cannot! Some of the best brains in mathematical physics
have been working on the problem, including Mitch Feigenbaum and Leo
Kadanoff of the University of Chicago, and Iramar Procaccia of the Weiz-
mann Institute in Israel. Together with a couple of very bright graduate stu-
dents, Chhabra and Kolan, they considered a model that is even simpler than
ours: the grains were arranged in a one-dimensional pile where sand was
stacked on a line, not a two-dimensional plane. The model self-organizes to
the critical poing, but no analyrical resules could be derived. For instance, they
were unable to prove that the avalanches follow a power law despite a monu-
mental cffort published in a long article in Physical Review.

In a very beautiful mathemarical theory, the physicise Deepak Dhar from
the Tarta Institute at Bombay was able to calculate some properties; he calcu-
lated how many possible sandpile configurations exist in the critical state. He
also constructed an algorithm that allows us to check whether a speciﬁc
conﬁgura[ion. like the one shown in Plate 1, represencs a conﬁguration that
can be found in the stationary state of the pile, or whether, conversely, it 1s a
transient state representing a sandpile that has not yet reached s stattonary
state. But he was notable to calculate the all-importantexponent T or to prove
that the stationary state has power law distribution of avalanches.

The mathematics is prohibitively diffiicult. But how can it be otherwise?
We deal with the most complex phenomena tn nature, involving a slow
buildup of information through a long history; why should we necessarily ex-
pecta simple mathemarical formula to describe thisstate?

The model is simple, but nevercheless too difhcule for theoretical physi-

cists and mathemarticians to analyze eFﬁciently. At least so far no one has been
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able to deal with it satisfactorily. This situation might have dampened some
enchusiasm.

In a subsequent chapter we shall see that for some ocher models we can
achieve a good deal of analytical insight. We can understand the basic narure
of the self-organization process. We can relate some exponents to other expo-
nents. In some simpliﬁed but even more artificial models where sand topples
to random positions, one can calculate the exponents, and explicitly show
that the pile self-organizes to the critical state.

We shall also see that there are othet models that describe surface growth,
trathe, and biological evolution, where pen—and-paper theories, or analyrical

theories as we call them, can be formulated.

chapter 4

real sandpﬂes

and 1andscape

formation

Qur ambitions extend beyond understanding the dynamics of real sandpiles.
Nevertheless, experiments on sandpiles can be viewed as the fiese est of self-
organized criticalicy, [f the theory thac large dynamic systems organize them-
selves to a crinical state cannot even explain sandpilcs, then whar can it ex-
plain? Our abstract model grossly ovcrsimpliﬁes real sand, but we sull hope
that our experiments live up o our predictions. However, nature has oo
obligation to obey our ideas; our intuition could be entirely wrong. Theory
has to be confronted cvcntually with real-world observations, so we stud)'
sandpilcs and we ask, Do they or don't they self-organize to the critical state?
Long Island s blessed with miles of beautiful beaches, and Kurt

Wiesenfeld was cager to do hisown experiment. Soon after we came

up with the sandpile idea, Kure went to Smich Point Beach, ten
miles south of the laboratory, and collected a small box of wert
sand. He formed a steep pile of sand in the box, and let it
relax until it came to rest. Instead of dropping sand on

the pile, or tilung the box, he simply put the box on
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his windowsill so that the sun would slowly dry the pile. As the sand dried, the
steep pile would become unstable, and there would be avalanches of sand
falling off the pile to the bottom of the box and making the pile more shallow,
possibly keeping the system at the critical state. As Kurt studied the sand pile,
there indeed appeared to be avalanches of many diffecenc sizes.

Conrrolled experiments with sand test the robustness ofour prediction of
self-organized criticality (SOC). Following the publication of our theoretical
sandpile model there was a sputt of worldwide experimental activiry, includ-
ing expertments on sand and other granular materials at the University of
Chicago and at IBM, an experiment on rice in Oslo, Norway, and an expeti-
ment on mud slides in Hungary. The laceer type of experiment may help us
understand landscape formarion. Sand slides onto roads in the Himalayas
can be interpreted in terms ofself-organized criticality. Sedimentary rock for-
mation can be seen as evidence of avalanches that were formed on a geological
time scale, indicating that landscape formation may be a self-organized criti-
cal process. The diversity of these experiments and observations underscores
the resiliency of the phenomenon.

Real Sand

The experiments on sand turned our to be much more complicated and te-
dious than we had anucipated. Experiments must deal with length scales from
as small as a grain of sand to thousands of times larger. The sandpiles musc be
very large to test the predicted power law behavior. In nature, where landscapes
extend over thousands of miles, these various length ranges are readily avail-
able, butin real life we are restricted by limited laboratory space. Also, there is
a limited amount of rime available; one cannot wait for hundreds of years o
amassa suﬁiciently large amountof data. On the computer, we had the luxury
ofstudying billions ofgrains of sand and millions of avalanches. The distribu-
tion of avalanches is a power law, so large events are bound to occur; however, to
have just one avalanche of size 1 million, one must wait for and monitor 1 mil-
lion avalanches of size 1 (Figure 13). Experimentalists do not have that luxury.

The firstexperiment was performed by Sidney Nagel and Heinz Jaeger
working with Leo Kadanoff at che University of Chicago. Kadanoff and his
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zoworkers had been actively involved in much ofchaos science, which hod lt:i
heyday in the 1980s. Kadanoffhas an cminentl):' clear sense‘for good scm:ce,
he raught me that good science is fun. There is always a Lively otmosp ﬁ:lre
around him, and many animarted discussions have taken -place in his oflice
and in the evenings under the influence of Kadanoff's single malr Scorch
iskey.
Whlslc v):ras not surprising to me that Kadanoff and his colleagues were am(l)lnj
the firstto try to find a mathematical solution to the sand.modei that we ad
studied on the computer and to do the relevant experiments. ]af:;e; an
Nagel partially filled a cylindrical drum with grains, and rotatid the r:;:
slowly, like aconcrete blender. Turning the drum creatos asandpile at or;e .
of the drum (Figure 14).The_rotation makes the slope increase; now and then
there are avalanches of falling sand, wh ich reduce the slope. The reader‘ cando
his own experiment by tilting a bowl of sugar slowly, aod observmgﬁ t}z
avalanches. The sand in the drum enters a stattonary state with a "vell-d.e ne
average slope. However, the pile appears not to be criticafl n t.his sr_atlon;ry
state. Indeed, thete were very many small and intermediate-size avalanches
orith a distribution following the power law. However, once the avalanches

I i cick 1 i was
reached a certain size, then inertial effects would kick in. Once a grain

Lol Figure 14. Rotating flrum
experiment. The sandplle
forms at one side of the
drumasitis turning. and
releases avalanches. This
type of expe riment was per-

formed by the C}lica.go
group, le& l)y Heinnc}l

Jaeger.
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moving, it would gain momentum, and cause the avalanche to continue run-
ning until the whole pile came to rest atan angle that was a couple of degrees
lower. Then the pile would start growing again because of the rotation. It
would emit small and intermediate-size avalanches while building up its sloPe,
until another enormous avalanche occurred. Thus, in its snationary state the
pile exhibited an oscillatory motion by which the slope builds up and relaxes.
This is not the critical behavior that we had predicted. The inerual effects re-
sponsible for this oscillatory behavior were not included in our stmple model.

Glen Held and coworkers ac IBM's research center in Yorktown Heights,
New York, set upa different type ofexperiment, more in line with our inirial
suggestion. Their experimental setup 1s shown in Plate 2. They built a sand-
pileontopofacircular plate. This plate, with a diamerer ofa couple ofinches,
was placed on top of a precision scale. To make the experiment “auchentic,”
they also collected the sand from Smith Point Beach near Brookhaven Labo-
ratory. Sand was droppedata very slow rate in the center of the plate through
aslowly rotaring glass tube. The sand formed a conical pileon topofthe plate.
The weightof the entire pile on the plate was recorded electronically, and the
weight signal was sent to a PC for analysis at short time intervals. The com-
puter calculated the mass of the avalanches of sand leaving the edges of the
plate.

Held's team found behavior that was consistent with what Jaeger's team
found. There was a range of avalanches with power law behavior; Lhey f;ound
large avalanches causing oscillations of the slope of the pile, but they did not
find intermediate avalanches. Their setup differed from the geomerry that we
suggested inone important aspect only the amountof low over the rim of the
plate was recorded. The much more frequent internal avalanches, in which
sand would move downward without leaving che plate, were not measured be-
cause they did notcause the weight of the pile tochange.

We were encouraged by these very preliminary experiments because they
revealed avalanches of many sizes. Nevertheless, some observers focused on
the less than perfect agreement. John Horgan, a science writer at Scientific
American, years later started a one-man crusade against complexity theory in
general and self-organized criticality in patticular. “Self-organized criticality

does noteven explain sandpiles,” M. Horgan wrote gleefully, but complertely
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put of context. While a good deal of skepticismn is healthy, it would be better if
;cicnce writers would let scientists themselves figure out what is right and
;vhat is wrong through the usual scientific process, which works pretty well in
the long tun. Usually, science Writers go to the opposite extreme—they are too
gulliblc. which is not as bad. I can assure the reader that my scientific col-
leagues can be relied upon to debunk what should be debunked. |

Soon after these early experiments, Michael Brerz, Franco Nori, and
their coworkers at the University ofMichigan tried again with an elegant
video technique. They performed two types of experiments. In one, they
Placed the sand in a Plexiglas box that was slowly rotated. The geometry nf
the expcriment was thatof an inclining ramp, similar to the Chicago experi-
ment. They monitored the falling grains with a video camera, and sent the
signal to a computer. By performing a digital image analysis of the pictures,
they identified and measured all avalanches, including the internal ones Eh.at
did not reach the edge of the pile. Bretz and Nori observed a power law dis-
cribution of avalanches. However, their system was smali, and they had to
halt the experiment when the sand stopped covering the bottom of the box;
thus, the process could not continue indefinitely, as mn the rotating cylinder.
Bretz and Nori also performed an experiment with a sandpile onto which
sand was dropped slowly, which was the geometry we had in mind. This ex-
periment was also recorded by a video recorder (Plate 3}, and found a power
law distribution of avalanches with an exponent 2.t3. These early experi-
ments led to the inescapable conclusion chat not everything in this world is
SOC. Some of the piles are ticking periodically rather than flowing in bursts

of all sizes.

Norwegian Rice Piles

The most careful experimentis a quite recentone performed by a group at the
University of Oslo, Norway. Jens Feder and Torstein Joessang are the dynamic
leaders of the Norwegian group, which is known for studies of fractal struc-
tures in porous media. In particular, they have made experimental and t[neoret—
ical investigations on how liquids invade porous materials, which is of impor-
tance for the exploration and retrieval of oil in the North Sea and elsewhere.
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Other investigators on this particular experiment were Vidar Fretre, 2
graduate student, and Kim Christensen. Kim had already been working with
us at Brookhaven on theoretical aspects of SOC and had played a prominent
rolein applying SOC to earthquakes, which is the subjectof the next chapter.
The final member of the team, Paul Meakin, formerly at DuPont research in
the United States, is famous for large-scale simulations of growth of fractal
structures. After the collapse of fundamental research ac DuPont, following
the general trend in industry in the United States, Meakin joined the Oslo
group.

These scientists together created the ultimate sandpile experiment. One
hopes this is a sign of things to come. Now that the multibillion dollar fund-
ing for the Texas superconducting super collider has vanished, experiments
based more on thinking and imagination and less on the blind and mindless
use of costly hardware, as had prevailed for thirty years, wouldn't be such a
bad outcome. [ suspect that more insight will come out of sandpile-type ex-
periments than would ever have come out of the super collider, at a cost re-
duced by a factor of 10,000. But we will never know. Unfortunare[y the SSC
was cancelled because of the general anti science atritude in the United Stages,
None of the funding was transferred to other projects, but additional cuts
were made everywhere. But since thoughts and sand are free, our research is
more resilient,

Dr. Frette and coworkers chose to study grains of rice, not sand. In princi-
ple, it should not marter very much what kind of material is used. The derails
should not be important. The grains of rice have a convenient size chat allows
for a visual study of the motion of individual grains. The sandpiles with
beach-type sand have problems because of the inertia of sand, which was not
incorporated into our computer models.

The Norwegian group first went to the local supermarket to buy
different typesofrice. One type was almost spherical, and the experiments on
that type had an outcome similar to the early experiments on sand. However,
another type had long grains, which have more friction than sand and do not
keep rolling. They are more likely to get stuck again once they start shiding.

The experiment was designed to be similar to our computer models ex-

hibiting self—organized criticality. 50 if Was important to monitor the bulk
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avalanches and notjust the rice falling off the edges. The rice pile was confined

'to the space between two glass plates, through which the dynamics of the pile

could be observed, either directly or with a video recorder. The rice was slowly

fed into the gap at the upper corner by a seed machine ara slow rate of wenty
grains per minute. Experiments were performed iit various spacings berween
the plates and atvarious slow feeding rates. Experiments were also performed
on many different system sizes, ranging from a few centimeters to several me-
ters. Each experiment lasted forty-two hours, so the dedicated participants
had to take turns sraying overnight to supervise the experiment. The long
runs were important in order to get good STaCiStiCs, particularly for the very
few large avalanches, and the large system size was important in order to have
awide range of avalanche sizes. In total, the experiment with the various sizes
and types of rice ran forover ayear!

Motion of the grains was monitored with a CCD video camera with
2000 X 500 pixels covering the active area. Frames were then taken every
fifteen seronds, and the digirized signal was sent to a computer, identifying
the positions of all the rice grains. The pile grew until it reached a stationary.
state. Once the STALiONAry Stare was reached, the camera and the computer
started monitoring the motion of rice gratns. Figure 15 shows a propagating
avalanche in the stationary state. The profiles of the rice pile at two consecu-
tive measurements are shown. The gray area shows the rice thar was present
at the first measurement, and not at the second, L.e., the amount of rice that
had fallen. Converscly, the black areas show where the rice went. Those
areas were not filled at the first measurement, only after the second. Thus,
an avalanche had occurred in the fifteen-second interval between the two
measurements. The size of an avalanche was defined as the total amount of
downward motion of grains between two successive frames, thatis the num-
ber of grains falling weighted by the distance they fell. The size of the
avalanche measured this way is equal to the energy lost, or dissipated into
heat.

Inthe stationary state, the rice grains get stuck in intricate acrangements,
where they lock into each other, allowing for steep slopes, even with overhangs
(Plate 4). An analysis of the surface profile shows thac it is a fractal structure

just like the coast of Norway, wich bumps and other fearures of all sizes. The



Fxgure 15. Awvalanchein the Norwegian rice pile experiment. During
a fifteen-second interval, rice left the gray areas and ended up 1n the black

areas (Eette et al.. 1995).

fragility of the critical state as compared with a lat bowl of rice isevident from
the figuce.

Figure 16 shows a sequence of avalanches that occurred in a period of 350
minutes during one run. On the basis of such measurements, one can count the
number of avalanches of each size. For the long grain rice the distribution of
avalanches is a power law, indicative of SOC behavior. The distriburion was mea-
sured for different sizes of piles (Figure 17). The larger the pile, the larger the

avalanche. The same scaling behavior was observed for avalanches ranging in
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Egure 16. Avalanches measured during a perioc! of 350 minutes. The

heights of the lines are proportional to the size of the avalanche.

size from a few grains to several thousand grains. Frette and coworkers showed
that the curves for different sizes of systems followed a systematic behavior,
known as“fnite size scaling,” unique to critical systems, Thus, SOC can indeed
be observed in the laboratory sandpiles, ifone has persistence and patience.

By coloring a few grarns, the experimenters were able to trace the mo-
tion of the individual grains. This turned out to be surprisingly compli-
cated. The shiding grains were not confined to the surface; the grains made
complicated excursions of long duration through the pile. No grains would
stay forever 1 the pile. They all eventually would leave, but some grains
remained in the pile for an extremely long time. This behavior is not under-
stood atall, but it does not atfect the SOC behavior, asevidenced by the mea-
sured power law. It would be interesting if the duration of grains conformed
to another power law.

Ex perimentalists might wish to have avalanches spanning an even larger
range of magnitude in experiments of longer duration. However, no laboratory
experimentalist has the infinite patience nature has, and no laboratory has the
space nature has, so there are limitson the systems that can be scudied. Observa-

tions of real phenomena, such as the distribution of earchquake magnitudes,
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F:gure 17 (a) Distrilmtion ofthe s1ze Eofavalanc]xes n rice piles of
different lengths L. The various curves are for various sizes of rice piles.
By systematically s}lifting the curves, they can be brought to cover each
other ([)) This property 1s known as finite size sealing. and implies criti-

cality (Frette etal., 1995)
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might show scaling behavior, Le. power laws, over much wider ranges thaﬁ'the
5hort—term experiments in the lab. After all, it rook billions of years for the mor-
Phology of the earth to reach its present state. On the other hand, laborarory ex-
Perimcnts allow study under systematically varying conditions, whereas nature
represents only a single experiment. This is the problem that one generally en-
counters when studying emergent phenomena such as large avalanches: the ex-
Periment must contain everything from the shortest length scale of the micro-
Scopic entities to the largest where the emergent phenomena occur. In contrast,
the “reductionist” scientist sees a need to study things at only the smallest scale.

Nevertheless, the Norwegian rice experiments show conclusively chat
SOC occurs in piles of granular material within the limits defined by the [ab-

oratory conditions.

Viesek's Landslide Experiment:
The Origin of Fractals

Tamas Vicsek is a Hungarian Physicis: who has devoted most of his career to
studying fractal phenomena. Together with Fareydoon Family ac Emory Uni-
versity in Atlanta, he developed a general formalism for describing growth of
surfaces by random deposition of material. The theory, known as the Fam-
ily=Vicsek scaling, is widely used both by experimentalists and theorists. Re-
cently, Vicsek has constructed a fascinating model for self-organization of a
flock of birds. He showed that it was possible for the birds to fly in formation in
the same direction without a leader. The individual birds would simply follow
their neighbors. The Aock migration (sa collective effect, as 1s SOC.

In collaboration with colleagues at the Eotvos University in Budapest,
E Somfaiand A. Czirok, Vicsek did an experiment that notonly confirmed the
evolution of a sandpile to the critical state, but also threw light on the mecha-
nisms for landscape formation in nature. Why do landscapes look the way they
do? They decided to build their own mini-landscape, subjected to erosion by
water. This type of laboratory experiment may be an interesting contribution to
geomorphology, the science of how real geological structures are formed.

A granular pile was erected by slowly pouring a mixture of silica and pot
soil onto a table. The initial “landscape” had the shape of a ridge. The ridge
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was watered by commercial sprayers modified to suit che experiment (note
again, a low-budget experiment). As the water penetrated the granular pile,
parts of the pile becarne saturated, and these wet parts slid down the surface,
like avalanches or mud slides.

The purpose of the experiment was to gather information on the distri-
bution of the sizes of the landslides in this micro-model of landscape forma-
tion by water erosion. This was done by video recording the changes in the
proﬁle of the ridge, just as Frette and coworkers did for the rice Pile. The in-
formation was fed to a computer for analysis.

Since each experiment eventually caused a complete breakdown of the
pilc, the experiment had ro be repeated many times to gera sufﬁciently large
number of avalanches. In principle, to represent real la ndscape formation, the
watering-down should be balanced by some kind of landscape upheaval. In
all, Vicsek and coworkers performed nine independent erosion experiments

_ with between ten and thirty mudslides in each experiment. All the data were
combined to form a single histogram of landslide sizes, which exhibited a
power law shape with an exponent near t, indicatir_lg self-organized criticaliry.

The experimenters measured many other properties of the landscapes
formed by the erosion process. The distribution of velocities of che landslides
is another power law. Most im portantly, they measured the geometrical prop-
ecties of the cesuleing contours of the landscape. They found chatitis a fractal
with features atall length scalest Thus, Vicsek's group had demonstrated in a
real experiment thar fractals can be generated by a self-organized critical
process, precisely as predicted from the sandpile simulations and as found
also by the Norwegian group.

Mandelbror, who coined the term fractal, racely addressed the all-impor-
tantquestion of the dynamical origin of fractals in nature, but restricted him-
self to the geometrical characterization of fractal phenomena. The Hungar-
1an experiment showed directly that fractals can emerge as the result of
intermittent punctuations, or avalanches, carving out features of all length
scales.

Thusitisa very tempting suggestion that fracrals can be viewed as snap-
shots of SOC dynamical processes! In real life, where time scales are much

longer than in the Iaboratory, landscapes may appear static, so it may not be
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Plear that we are dealing with an evolving dynamical process. In the past, geo-
Physicism have fallen into this trap when dealing, for instance, with earth-
quakes as a phenomenon occurring in a preexisting fault structure. The
chicken (geomerric fractal scructure of the network of faults, or the morphol-
ogy of landscapes) and the egg (earthquakes, landslides) were treated as two
endirely differenc phenomena. The geophysicists did not realize that the
earthquakes and the fault scructures could be two sides of the same coin,

different manifestations of one unique underiying critical dynamical process.

Himalayan Sandpiles

Do sand slides in nature obey the power laws indicative of SOC that were ob-

" served in the laboratory under controlled circumstances? To shed some light

on this, David Noever of the NASA George C. Marshall Space Fligﬁt Center
in Alabama has investigated sand slides in the Himalayas. Noever examined
data from two road-engineering projects. On two mountain roads in Nepal,
the six-ktlometer Mussoori-Tehrie road and the cwo-kilometer stretch on the
recently completed Mussoori'bypass, avalanches were cleared off the road.
The smallest landslides had a volume of 1/ 1000 cubic meters, which is about
ashovelful. The largest avalanches were 10,000,000 cubic meters, 5o the land-
slide volumes spanned a colossal range of eleven orders of magnitude, com-
pared with the two or three orders of magnitude covered by the laboratory ex-
periments.

Incontrast to the early sandpile experiments, there were events ofall sizes.
The distribution of avalanches follows a power law over about six orders of
magnitude. The power law was not obeyed for avalanches smaller than one
cubic meter. [suspect that chis is stmply because not all avalanchesinvolving a
few shovelfuls were recorded, just as not all small earthquakes are. (See Figure
2 for a similar effect for small earthquakes.) Also, the small sand slides may
have been removed by cars and yaks traveling along the roads. In any case
there was scaling extending over an enormous range. Noever notes that the
avalanches originate from a steep “supercritical” state that erodes and pro-
duces avalanches. He points out that one obvious laboratory setup “would be

systematically drying or vibrating an overly steep pile of wet sand.” That was



78 How Nature Works

essentially che type of experiment that Kurt performed in an uncontrolled
way on his ofice windowsill in 1987.

Sediment Deposition

Rocks formed by sediment deposition form a layered structure. One process
for the formation of the layers works as follows. First, by various transport
- processes, sedimenc is deposited at the edge of the continental shelfand along
the conrtinental slopes. The slope evencually becomes unstable, causing
avalanche-like events known as slumps. The slump creates a region of mud,
which flows along the sea bottom. Eventually the mud current slows down
when it reaches the relatively flar basin plain, at which point the sedimenc it
has carried ﬁnally sertles down. Deposits produced this way are called mr-
bidites. Turbidite events occur on time scales ranging from minutes to days,
.whereas the time berween deposition events in any location is thought to be
on the order of years to thousands of years. We are dealing with an intermit-
tent, punctuated equilibrium phenomenon. By studying the thickness of lay-
ers, ranging from centimeters to several meters, one can estimate the discribu-
tion of avalanches causing the sedimentation.

Some of the experiments on sahdpiles did not exhibic SOC, prcsumab[y
because of inertia effects, in contrast to our model, which did not include the
inertia, or momentum, of the sand grains. This observation is incriguing and
relevant to the interpretation of turbidite deposition. Since the slumping oc-

“curs in the ocean, the water may be sufficient o damp the motion.

Daniel Rothman of MIT and his collaborators John Grotzinger and
Peter Flemings have carrted ourt a detailed study of turbidite depostts. Tur-
bidites can be observed at the Kingston Peak formation along the Amargosa
River near the southern end of Death Valley, California { Figure 18). The tur-
bidites were formed approximately 100 million years ago. The sample that
Rothman’s team studted was obtained by deilling a hole several hundred me-
ters deep and recovering the sediments from that hole. They counted how
many layers exceeded a certain thickness, and made the usual log-log his-
togram (Figure 19). Indeed, there is a powet law distribution of layer thick-
nesses, as the theory of SOC predicts.

Figure 18. Photograp]\s of turbidites in the Kingston Peak _For-
mation. Daniel Rothman, John PGrotzingen and' Peter F}emlngs. Note
the 1ayerec1 struecture, spanning a wide range of thicknesses (a). T]le_

penny illustrates the scale (l))
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Flgure 19. Number of turbidite layers thicker than hasa function of
the logarithm of the layer thickness h for 1.235 turbidites observed in

the Kingston pea]c formation. The straight line hasa slope of 1.39, ind1-
eating a power law distribution of the thicknesses of the Iayers. and thus

for the disttibution ofava].anc}les whicll formed tllem (Rotiunan et al..
1994). -

Geomorphology:
Landscapes Out of Balance

Landscapes are prime examples of complex systems. Simple systems do not
vary much from one place to another. Landscapes are different. We can look
around and orient ourselves by studying the landscape precisely because every
place isdifferent from every other place. Complexity involves surprises. Every

time we turn a corner, we see something new. What are the general principles
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gdveming the formation of landscapes? So far, there has been no general
framework for discussing and describing landscape formation.

It puzzles me that geophysicists often show little interest in the under-
lying principles of their science. Perhaps they rake it for granted that the earth
1550 complicated and messy that no general principles apply, and that no gen-
eral theory (in the physicist’s sense) can exist. There are outstanding excep-
tions, however. Donald Turcotte of Cornell University has been involved in
discovering the general mechanisms governing geophysics for a number of
years. In particular, he has performed extended analysis of many fracral phe-
nomena and constructed simple mathematical models re producing some
gene:al features in geology and geophysics.

Another exception 15 Andrea Rinaldo of the University of Padova. His
university may be considered the cradle of modern science. In the fifteenth cen-
tury the idea of studying the human body by observing and describing, rather
than by unsubstantiated philosophical arguments, originated at Padova.

Rinaldo is a hydrologist. He studies the flow of water on earth—in the
ground, the oceans, and the atmosphere—and the interactions between water
and vegeration. He has been particularly interested in the complicared dy-
namics of the flow of water from the Adriatic Sea back and forth into che la-
goons of Venice. In the best tradition of the University of Padova, Rinaldo
wants to identify some general principles for the formation of landscapes. To-
gether with his colleagues Riccardo Rigon, also of Padova, and Ignacio Ro-
drigues-turbe, a colorful and outspoken geophysicist from Venezuela, he
initiated a theoretical study of the formation of river networks and the effects
of the rivers on landscapes. Small rivers, starting essentially everywhere, join
each other to form larger rivers, which merge to form even larger rivers,and so
on until che largest rivers run into the oceans.

It is known that the branching scructure of rivers follows a simple power
law known as Horton’s law. Horton defined the order of river segments as the
number of links to other segments that has to be passed before the river
reaches the ocean. Horton's law states that the number of segments of each
order increases as a power law in the order. This hierarchical steucture indi-
cates that river networks are fracral, just as the hierarchical structure of fjords

along Norway's coast indicates that the coast is fractal. Another em pirical law
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says that the length L of a river scales with the area 4 that is drained by that

river as

= 1.4(4.0'6.

Could it be that these and other power laws for river networks are indicative of
SO

In sandpile models, the criticality comes about from a combination of
WO processes: energy is supplied by adding sand or tilting the pile,and energy
is dissipated by toppling of the grains of sand. Rinaldo's group speculated
that landscape formation occurs by a similar process, in which energy is sup-
plied by an uplifting process (by plate tectonic or some other geological
process) and dissipated through erosion by wind and water.

In Rinaldo’s model, erosion takes place if the stress on a riverbank from
the water flow exceeds a critical value. The stress ata given point depends on
the flow of water through that point, and the slope s of the fandscape. The flow
of the water is proportional to the area A that is drained by the river branch,
assuming that the rain falls at the same race everywhere. The formula for the

stress was taken to be
stress = A5}

(although the exact expression is not important).

The simulation is quire simple: Starting from a given landscape with a
river network, the stress is calculated everywhere using the formula above.
The sites where the stress exceeds the critical value are identifted. Ecosion is
simulated by removing one unit of material at each of those sites. After the
erosion takes place, a new landscape, with a new network of rivers, has
emerged, and the process is repeated. The river pattern is constructed from
the resulting contours of the landscape by having the water always running in
the direction of steepest descent from any point. The erosion ts combined
with a general uplifting that uniformly increases the slope s of the landscape
everywhere. It would be interesting to do real laboratory experiments of the
type that Vicsek did, in which the washing down of the sand pile is combined
with uplifting, for instance a gradual tilting of the pile.
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The landscape settles into a stationary state, with a fractal network of
fivers traversing a fractal landscape. Figure 20 shows a snapshot of the river
network. Many aspects ofthe computed river network are in agreement with
cmpirical observarions, such as Horton's law and the law for the drainage
area for a river of a given length. The power laws show that the stationary
sate is critical. Plate 5 shows the corresponding landscape that was gener-
ated by the process.

Rinaldo’s computer simulations of landscape formation represent a new

and refreshing way of looking at geophysics. Instead of simply describing all

F:gure 20. Andres Rinaldo's river network. The network was gener-
ated lay a computer caleulation following a sxmple rule for erosion. The
network has statistical properties similar to those of real river networks.
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geophysical features by a simple cataloging process, or “stamp collection,” the
simulations reveal the general mechanisms. Observing details may be eater-
taining and fascinating, but we learn from the generalities.

Rinaldo concludes that the fractal structure of river networks on the
surface of the earth is a manifestation that the crust of the earth has self.
organized into a critical state, forming landscapes “out of balance.” No other
dynamic mechanism for the formation of fractals in geophysics has been pro-
posed. The variability of landscapes can be viewed as an SOC phenomenon.,
Landscapes are snapshots of a dynamic critical process.

Icis particularly rewarding to visit Rinaldo and his group. Our meetings
take place at the Instituto Veneto Di Scienze, Lettere Ed Arti, an impressive
classical building in the heart of Venice, within ten minutes walk of both the
Rialto Bridge and Marcus Square. It forms a remarkable contrast to the bar-
racks in which we work at Brookhaven Laboratory. The environment has a
stmulating effecton the lively discussions about nature at work.

In the final analyss, it is these applications of the ideas of self-organized
criticality to real features in our world that make our theoretical effort worth-
while. Self-organized criticality is not just an esoteric mathemarical com puter
game; tr represents an explanation of everyday objects in nature. More exam-

ples linking se[f—organized criticality with the dynamics of nature follow.

chapter 5

;eartllqual(es,
starqual(es,

and solar ﬂares

Earthquakes may be the cleanestand most directexample ofa self-organized
critical phenomenon in nature. Most of the time the crust of the earth is at
rest, in pcriods ofstasis. Every now and then the apparent tranquillity s inter-
rupted by bursts of intermittent, sometimes violent, activity. There are a few
very large carthquakes and many more smallec earthquakes. The small eacth-
quakesdo not affectus acall, so scientific efforts have been directed toward try-
ing to predict the few large catastrophic ones. Scientists have taken a very
direct approach, formulating individual theories, or explanations, for indi-
vidual earthquakes or earthquake zones; there has not been much effort di-
rected toward a gencral understanding of the earthquake phenomenon.

The geophysics community 15 very conservative. For instance, the

theory of plate tectonics as a general explanation for the shifting
of crustal places that creaces earcthquakes was put forward in
The Origin of Continents and Oceans by the German meteorolo-
gist Alfred Wegener in 1912, but noteven found worthy

of discussion until the late 1960s. Among its obvious
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appealing features, it explains the similar shape and geological composition
of the west coast of Africa and the east coast of South America.

Don’c get me wrong. I have che deepest respect for the type of science
where you puton your rubber boots and walk outinto the field to collect data
about specific events, Such science provides the bread and butrer for all 5CI-
entific enterprise. [ just wish there was a more open-minded attitude toward
attempts to view things in a larger context.

I once raised chis issue among a group, not of geophysicists, but of cos-
mologists ac a high table dinner at the Churchill College in Cambridge.
“Why is ic that you guysare so conservarive in your views, in the face of the al-
most complete lack of undersranding of what 1s going on in your fleld?” |
asked. The answer was as sim ple as it was surprising. “If we don't accept some
common picture of the universe, however unsupported by the facts, there
would be nothing to bind us together asa sciencific communicy. Since it is un-
likely thar any picture that we use will be falsified in our lifetime, one theory is
as good as any other.” The explanation was social, not sciencific,

Explanations for earthquakes typically relate che earthquakes to specific
ruptures of specific faults or faule segments, This might be reasonable, but
then, of course, one has to explain the faule pattern indepcndcnrly. Analo-
gously, our sand man may correctly conclude that the origin of sand slides is
toppling sand, but that does not provide any insight into the properties of
large slides, The fact that earchquakes are caused by ruptures acor near faules
does not in itselfexplain the remackable Gutenberg—chhtcr law.

Scientists are poor at making earthquake Predictions, and not for lack of
effort. All kinds of phenomena in nature have been viewed as precursors of
large earthquakes, such as the behavior of animals, the variations in the
ground water level, and the occurcence of minor earthquakes. The lacter ap-
proach, wying to recognize earthquake patterns prcceding major quakes,
seerns, at least in principle, plausible. However, there has been no success. In
particular, there have been claims thar earthquakes are periodic at some loca-
tions, but the statistics were never based on more than two to four intervals.
Notably, it appeared that in the Park Field earthquake region in California
there wasa periodicity oFapproximately 2o years. Some years agoa majorand -
exXpensive project was set up to study the next earthquake. The last event in
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yhat area took place in the 1950s, and the scientists ace sti.ll waiting! Th'e. earth-
quake predictors have had much less success t.han their mete?roFoglst col-
leagues. “Only fools, charlatans, and liars pI‘CdlCF ear;hquakes, Richter (fa-
ther of the Gutenberg=Richter law, and the Richter scale for earthquake
magnitudes) once said. The phenomenon is surrounded by much folklf)re.
Because of the poor statistics of the very few large quake.s, one can say !ust
about anything about earthquakes without being su.b]ected- to. possible
falsification. The pred ictions will not be challenged within the lifetime of the
person making the prediction. |

Indeed, after an earthquake one can report what happened in somfz de-
rail. One can identify the fault that was responsible and pinpoint the epicen-
ter. This information might convince scientists working on earthqua.‘keithat
one should be able to predict large events. “With a lictle more f?undmg c?ne
might become successtul. However, our expertence with sandpile rnode[u?;g
tells us that things do not generally work our that way. Because we can explain
wich utmost precision whart has happened does not mean that we are able to
predict what will happen. | .

Lt seems reasonable to take some time to acquire a general understanding
of earthquakes before jumping into predicring specific events. This chapter
discusses the extensive work that has been performed during the last few years,
supporting the view that earthquakes are an SOC phenomenon. The Guten-
berg—Richter law—discovered long before anybody thought al?ou-t laltld—
scape sclf-organization—epitomizes what SOC is all about. The distribution
of earthquake magnitudes is a power law, ranging from the smallest meas.ur—
able earthqu ake, whose size is like a truck passing by, to the. largejst devastating
quakes killing hundreds of thousands of people. I cannor imagine a theory of
earthquakes that does not explain the Gutenberg-R.icl.lte.r law. | |

The Gutenberg—Richter law (Figure 2) is a statistical sc.a[mg law—it
states how many earthquakes there are of one size compared with bow many
there are of some other size. It does not say anything abour a specnﬁc earth-
quake. The law 1s an empirical law—it stems from direct measure.ments and
has not previously been connected with general principles in physics.

One might think that there 1s something special about the largest events

: ) .
on the curve, of magnitude g or so for a worldwide catalogue. It appears tha
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thete must be some particular physics on the scale that prevents larger quakes
from taking place, This is probably an illusion. The largestevents merely rep-
resent the largest magnitude that we typically can expect in a human lifetime,
Even if the Gutenberg—-Richter law extends beyond earchquakes of magnitude
10, we may not have had the opportunity to observe even a stngle one. A super-
human living for a million years might well have observed a few earthquakesof
magnitude (2, involving, for example, most of the earthquake zone ranging
from Alaska to the southern tipof South America. To this su perhuman, earch-

quakes of magnitude g miught appear uninteresting. Similarly, a mouse living

only for ayearorso, mightfind an earthquake ofmagm'tude 6 [erribly interest-

ing, since this is the largest it can expect to expertence in its lifetime. Unforry-
nately, it is not yet possible to check by geological observations whether or not
there have been earthquakes of magnitude, say, toin the last 10,000 years.

The scaling law says that there can be nothing special about earthquakes
of magnitude 8 or g because there is nothing special abouta human lifetime of
1ooyearsor so(the average time interval for such events) in a geophysical con-
text, tn which the time scale for tectonic plate motion is hundreds of millions
ofyears. Thatis not necessarily a bad sicuation; since the physics is the same on
all scales, one might acquire insight into carthquakes ofmagnitude 8orgby
studying the much more abundant quakes of magnitude 5 or 6, the statistics
of which are more available. It is pointless to hang around for dozens of years

toget better dara on Earge carthquakes,

Self-Organization of Eérthquakes

I fiest heard about che Gueenberg-Richter law in 1988 during a Gordon con-
ference on fractals, soon afer our discovery of SOC. Gordon conferences are
informal, private conferences where scientists in many differentareascan pre-
sent and discuss their most recent resulgs, The Gordon conference is a
magnificent institution that has served sctence very well. Thcy take place in
the summerata few small colleges near the beauriful lakes, forests, and moun-
tains of New Hampshire, and offer an opportunity to combine scientific dis-
cussionswith ava rieey of recreational activities. As we have seen before, the en-

vironment plays a [arge role in human.scientific creativiry.
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Scientists in general, and physicists in particular, are quite enterprising
when it comes to selecting sites for their communal activities. My career as a
hysicist has altowed me to visit some of the most fantastic places on Earth,
imh as Aspen, Colorado (the Aspen Center of Physu:s)., Santa Barbara (the
Institute of Theoretical Physics), New Hampshire, Venice, the Great Wall of
China, Moscow (the Landau Institute), Santa Fe (the Santa Fe Insticuce), an’d
the Alps (the Physics Institute in Les Houches, near Cha:tnomx). You don't
get rich from doing physics, but you do get an opportunity © go to all the
Places the rich would goto if they had the time. .

The Gordon conference was on fractal scructures in nature. [t was parric-
ularly stimulating because it brought together sci.entists from man).f diﬂ"e.renc
fields. More typical scientific conferences deal with narrow esoteric Sl'leeC[S
about which all the participants are experts. One of the speakers of this con-
ference was Yakov Kagan of UCLA, who addressed the importance of scale-
free behavior of earthquakes and earthquake zones. He pointed out that
faults form fractal patterns, and presented worldwide earthquake data show"-
ing power law behavior of earthquake magnitudes over seven decades. This
was the first time [ had heard about the Gutenberg—Richter law.

Kagan gave a sharp reburttal to much of the folklore surrounding the earl.:h-
quake bustness, such as “characteristic earthquake” sizes, [ had never been in-
volved professionally in geophysics and knew lictle about che subjecr.-Nev‘erthe-
less, T was fascinated by his talk. Were earthquakes like che sand slides i our
sandpile model? Tectonic plate motion, providing the energy for 1fhe earth-
quakes, would correspond to tilting the sandpiles in the ramp verspn of the
model. The ruptures would correspond to oppling grains. Just as the increased
force on the grains from the slow tilt would necessarily sooner or later cause d-fe
sand to topple somewhere, the slowly Increasing pressure from the tectonic
plates grinding into one another eventually must cause rupture somewhere.
Just as toppling grains can affect one another in a domino process, one ruptuf'e
can lead to another by the transfer of force, and sometimes lead toa large cl}am
reaction representing a large earthquake. In a larger perspec:ive, one mlg:t
think of the plate motion as the source of “landscape upheaval” and the earth-
quake as the “erosion,” whose combined effects organize the crust of the earth to

" N
it ! ! s 5 nce” picture.
the critical state, using Rinaldo’s landacape outofbala P
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1 returned to my laboratory and, together with Chao Tang, did some furr-
ther computer simulations of the sand model. We studied the continuous, de-
terministic version in which the sandpile is slowly tilted, which is the version
with real variables Z in Chaprer 3.

What we had in mind was a block-spring picture of earthquake gencra-
tion (Figure 2 ¢), in which the fault is represented by a two-dimensional array
of blocks in contact with a rough surface. In che real world one cannot local-
ize the carthquakes to single preexisting faults. The Gurenberg-Richeer law
concerns the stacstics ofcarthquakes over an extended region like California.
Of course, we cannor construce a realistic computer model of California and
follow its evolution through hundreds of millions ofyca rs, as we would like to

do. In the block-spring model, the blocks are connecred to a constantly moy-
ing plate by leaf springs. The leafsprings represent the pressure on the marer-
1al near the fault due to the wectonic plate motion. The blocks are also con-
nected with cach other by coil springs. Each element sticks to the surface
when the sum of the spring forces 1s less than a threshold. The leat springs
exert a constantly increasing force on all the blocks. When the force on a prac-

tcular block becomes larger than the threshold, the block slips istanta-

moving plate

fixed plate

Figure 21 Block-spring model of eart}lqual(e fault. The blocks are con-
nected with a slowly moving rod by leafsprings. T}ley are also connected
with each other by springs. Parameters Kl. K2. and KL specify the
strengths of the springs. The bloeks are moving on a rougl’x surface. A
blocks slide when the force on it exceeds a critical value.
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n
creases the force on the four neighboring springs, and might cause the force

eously in the direction of the moving rod. Because of the coil springs, this in-

on ONE Of more of those blocks to exceed the critical value, so that tht:y, oo,
would slip. This could lead to the chain reaction represenung the carchquake.
This type of model had been introduced years before, in 1967, by Burridge
and Knopoffat UCLA.

It was payoff time for our work on the rotating pendulums. The arith-
metic of the block-spring model was very much the same as for the coupled
Pendulums. Pulling the blocks by the leaf spring was like slowly winding up
all the pendulums simultaneously, until one of them would make a rotadion,
initializing an avalanche. The slip of a block corresponds to the rotation of a
Pendulum. In turn, we knew that the rotationof a penduium 15 equivalent to
the toppling ofa grain of sand in the sand model. Thus, the three models are
machematically tdentical; ifyou have studied one, you have studied them all!
Indeed, 1t was at that point we found that the continuous, s[owiy driven
deterministic sandpile model provided the same power law as the initial sto-
chastic version, driven by adding sand randomly. Thus, the Gutenberg-
Richrer law is the fingerprint chat the crust of the carth has self-organized to
the ceivical state.

Soon after, other groups independently discovered that carthquakes can
be thought ot as a SOC phenomenon. Didier and Anne Sornette, a married
couple at the University of Nice, presented their results in a short article in
Europhysics Letters; they pointed out the analogy between sandpile models and
block-spring models. Didier Sornetee may be the most imaginative of all geo-
physicists—maybe even too tmaginarive, if that’s possible. Every six months
he comes up with another general observation ot theory of some geophysical
phenomenon. His batting average of being right s rather low, but in science
that doesn't macter, as long as just once in your lifetime you say :.omething
important and correct. Keisuke Ito and Mitsuhiro Matsusaki of Japan
published a much more derailed account in the ]oumal of Czopb_\;szca! Re-
search. These authors also studied the possible origin of aftershocks, which also
were known to follow a power law distribution known as Omori’s law. Amaz-
ing[}; all chree groups chose essentrally the same title, “Earthquakcs as a Self-

organtzed Critical Phenomenon.”
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A fourth group, Jean Carlson and Jim Langer of the Institute for Theo-
retical Physics, Santa Barbara, made much more laborious calculations on 5
more detailed model in which the blocks did not slip instantancously to their
new positions, as represented by the toppling of a grain of sand in the sang
model, following Newrton’s law. They kept the inertia of the blocks, in con-
trast to the sandpile versions. This type of calculation is very slow, so only
small systems can be studied. Tt was precisely o avoid such calculations thar
we introduced the simpler sand models mstead of the messy rotating pendo-
lums, which supposedly would behase in the same way. Another justification
for che simpler sand model is thar we really don't know the forces, including
the fricrion, to insert into the block-spring model, so the model is not realistic
under any circurnstances. Carlson and Langer found a power law for small
earthquakes, and they found more or less periodic huge earthquakes, a dister-
bution not found for real car[hq uakes. Their stmulation gave a much berrer
description of the early sandpile experiments performed by the Chicayo
group, where anertial ctleces take over and prevent mrermediate size
avalanches. Recall tha, in contrase, the Norwegian group had reduced iner-
viad effects by using long sticky grains of rice.

W were ambitous, and sent an account of our carthquake tdeas o che
world's most presugious journals, first to Natwre and then w Seence. Our article
was rejected by both journals, by geophysicists who did not understand what
ic was all about. The idea of having a genceal theory of the phenomena of
carthquakes was unacceptable. However, the referees should be given credi
tor revealing their rdentiny which s not required in the normally anonymous
referceing process. To appreciate the pam and an novance that one might feel
because of such a decision, 1t should be poinred our thac essentially anvihing
can be published, no matter how insigniﬁcant—»cwn n Nature. Mosi purb-
lished material sinks like a rock and never surfaces again. [c s precisely when
vou have something porentally new and ieeeestng that you get in trouebloe,
[ron ially, dozens ot articles a ppll\'ing our tdeas to various nacural Plu'nnm—
ena have since appeared wath great rcgul;\riq' tn those same journals.

Soon atter, [ presented our sdeas at a conterence on carthquakes in Mon-
terey, Cahfornia, a place with a spectacudar view of the surf of the Pacilic

Ocean. L couldn’t hclp noting iy myv talk thatour arncle had been rejocted tor
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Publication in Nature by Professor X who is sitring to the left, and for Science by
Dr. Y who is sieeing to the right Both flushed. Burt ac least everyone became
aware ofour ideas at that point, Acthe same conference, im Langer presented
calculations on the more derailed Carlson—Langcr one-dimensional block-
spring models.

Eventually, our article was published in the fournalof Geophysical Research by
its editor, Albert Tarancola, who took the martter in his own hands and pub-
lished the artcle despite its rejection by his referees. By 1995 there were more
than 100 articles in the lirerature supporting the view of ear[hquakcs as an
SOC phenomenon.

Our model was immensely ovcrsimpliﬁcd and wrony in one respect, Qur
original sand model was conservative, that s, all the sand chat topplesends upat
the netghboring sites. There s no sand lost in the process, That s quite rea-
sonable for sandpiles. For carthquakes, on the other hand, a careful analysis of
the block-spring model shows that there is no reason for conservation of
forces. The amount of force that ts transmicted to the neighbors mayv be less
than the release ot force on the shiding block. As soon as the condition of con-
servation was relaxed in the sand model, b)’ Icning notone grain ofsand arrive
at the neighbor sites, but, say only 0. grains, the Gurenberg—Richter law
would be obeyed onlyuproacu Loﬂ'nmgnitudu that would de pend on the de-
gree of conservation. There would be only small carchquakes. The block-

spring model would not be crincal?

A Misprint Leads to Progress

The solution to this problem was found by accident. In 1990 Kan Chen and |
wrote an extended version of our earthquake article for a book, Fractals in the
Earth Sciences, cdited by Christopher Barton of the U.S. Geological Survey. Kan
Chen was a rescarch assoctate working with che condensed matwer theory
group, cominy to us from Ghie Srare University. We had made extensive cal-
culations on the continuous version of the sandpile, where all the hewghis are
raised uniformly unul chere isan instability somewhere.

Barton had for some time been excited about the appearance of fractals

evcr}'whcrc in gcophysxcs, and decided to edit a book on the subject, with
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chapters written by scientists working on fractals. Chris immediately saw the
possibility of SOC being the underlying dynamic mechanism for a variety of
geophysical phenomena, and asked me to write a chapter. Unfortuna[ely. there
was a minor misprint in the preprint of that article that we circulated to col-
leagues. The following discussion necessarily deals with some technical issues,

Let us recall from the discussion of the sand model that when the heighe,
representing the force f acting on a particular part of the crust of the earth,
reachesf = 4, it relaxes tof — 4, while rransmitting one force unit to each ofits
four neighbor blocks. Instead, we wrote that f goes to o. For the first toppling
in an avalanche this is no problem, since fof the toppling site is exacely 4. How-
ever, for some of the subsequent toppling events f is greater than 4, so the re-
laxartion is greater than 4, and oaly 4 units of force are transmitted. Thus,
there 15 a net loss of force in the process iff is reset ro o.

In Oslo, Hans Jakob Feder, together with his father Jens Feder, decided to
test the SOC earthquake theories by pulling a sheet of sandpaper across a car-
pet. The motion was not smooth, but jerky. They measured a power-lasw dis-
tribution of the sizes of the slip events. Hans was a high school studenc in
Oslo, Norway ac thac ime.

The Feders also decided to simularte earthquakes using our instructions
tn the preprint. Indeed, they reproduced the Gutenberg=Richrer law, but
with other exponents than the ones we predicted. Jens Feder called me, and
the misprint was discovered. Inaclvertently, they had studied a model thathad
ne conservation of force, but nevertheless exhibited SOC. This was of great im-
portance, since at that time there was a growing suspicion among sCiencists
working on dynamic phase transitions, such as Gt:offrey Grinstein at IBM
and Mehran Kardar at MIT, that SOC occurred only if the system was
“tuned” to be conservative, indicating that one would not in general observe
criticality in nature. Lhad greacdifficulties rebutting those clatms at that time.
The Feders published their results in Physical Review Letters.

I decided w0 invite Hans Jakob Feder to Brookhaven in the summer of
1991 At that time [ had two very resourceful research associates working with
me, Kim Christensen, who later became involved in che Norwegian tice pile
experiment, and Zeev Olami, a postdoctoral fellow from Israel. Kim was for-

mally a graduare student of the Uhiversity of Aarhus in Denmark, so che
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projectwas © be included in his thesis. In an earlier work, performed while an
undergraduate student in Aarhus, Denmark, he showed that our analysis of
1/fnoise in the original sand pile article was not fully correct. Fortunately, we
have since been able to recover from that fiasco in a joint project by showing
that for a large class of models, 1 / /fnoise does indeed emerge in the SOC state.
One could not imagine a more diverse pair of scientists. Kim works carefu!ly,
logically, and systematical[)'; Zeev is (ntuitive, undisciplincd, and full of ideas.
This was an ideal collaboration, with Kim kceping Zeev honest by ﬂushing
out the worst ideas.

Zeev, Kim, and Hans Jakob started with the block-spring picrure { Figure
21),and transformed itinto a mathematical “sandpile™like algorithm: Each
block is subjected, as usual, to a constantly increasing force from the moving
rod, and a force from the neighbor blocks. Whenever the force on any block
exceeds the critical value f = 4, the force on that block 15 reduced to O, while a
fraction o of that force is transferred to each of its four neighbors. In the spe-
cial case that the fraction & is 1/ 4, the model reduces to the deterministic con-
servative version of the original sand model. When a is less than 1 /4 the
model is nonconservartive.

It cannot be emphasized enough that the setup 1n Figure 21 does not
really represent how earthquakes work. It is our spherical cow. The earth-
quake cannot be localized ro individual, preexisting faules; it is a chree-
dimensional distributed phenomenon. The Gurenberg—Richeer law 1s nota
property ofa fault, buta property of the entire cruse, or at the very leasta large
geographical area. Ideally, we would like to have the fractal systems of faults be
created by the earthquake dynamics itselfin che model, simulating the entire
geological process that formed the crust and eventually carried it to the criti-
cal state. The model is merely intended to show that such behavior is indeed
within the realm of the possible.

Hans Jakob, Kim, and Zeev studied the model on the compurer. Indeed,
they found earthquakes of all sizes following the Gutenberg—Richter law!
(Figure 22). What was particularly interesting abouc chis result was (1) the
model was derived from a careful analysis of the original Burridge-Knopoft
block-spring model, which was already well known and accepted 1n the com-

munity {they did not have to pull some new “ad hoc” physics out of the hat);
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originating from the E)loc](-spring model studied by Olamij et al. (1992}

The various curves corresponcl to different system s1zes.

and (2 the model required no tuning in order to be critical. The power law
was valid for a wide range of values of the parameter & They could even in-
clude various types of randomness in their model without destroying the crit-
icaliry.

The various curvesin the figure correspond to various numbers of blocks.
When the number of blocks in the systemn increases, the power law extends to
larger events in a systematic way known as finite size scaling, which only criti-
cal systems obey. Conversely, if the system is not critical, the cutoff will not be
affected by system size.

Again, the results were published in Physical Review Letters. Hans Jakob had
managed to become a coauthor of two articles published in the world's most
prestigious physics journal before graduatng from high school. So if any of
my readers should happen to have ideas of their own, don't be shy. Go full
speed ahead, and don't let any professional sciencist intimidate you.
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The model was still very simplified. When there is a rupture in any solid
gnaterial, not only the nearest neighborhood is affected. In reality, the elastic
Yorces extend to very large distances. Taking this into account, Kan Chen,
Sergel Obukhov, and I constructed a much more elaborate model of fracture
formation. Starting with a nonfractured solid, a fractal pattern of fault zones
emerges, together with a power-law diseribution of fracture events. This simu-
Jation showed that a fractal faulc pattern and the Gutenberg-Riuchter law
could both be derived within a single mathematical model. The results are
much more in tune with real earthquakes, where the seismic activity is distrib-
ured over a large area and not confined to individual faults. Some earthquakes
involve interactions between faults, where the ruprure along one faulr puts

pressure on another fault, which then ruptures during the same earthquake.

Rumbling Around Strombols

Volcanic activity, like that of earchquakes, is also intermittent, witheventsofall
sizes. A team headed by Paolo Diodati of the University of Perugia, Iraly has
measured bursts of acoustic emission, that is rumbling sounds, in the area
around Stromboli in Iraly. They placed piezoelectric sensors coupled to the
free ends of steel rods tightly cemented into holes drilled into the rocks. One
sensor was placed atadistance from the volcano and another was placed nearer
to it. The sensors measured the distribution of the strengths of the burst ofac-
tivity. Figure 23 shows the distribution for the two signals. Although one signal
was weaker than the other, the straight lines on the logarithmic plots have the
same slope, with an exponent approximately equal to 2. Diodati claimed chat
this indicates that volcanic activity 1san SOC phenomenon.

It seerms that the human brain has not developed a language to deal with
complex phenomena. We see patterns where there are none, like the Man in
the Moon, and the inkblots shown in Rorschach psychological tests. The
human mind cannot directly read the boring straight line in logarithmic
plots from observation of geophysical phenomena. Firstwe tend to experience
phenomena as periodic even if they are nor, for example, at gambling casinos
and in earthquakes and volcanos. When there is an obvious deviation from

periodicity, like the absence of an event for a long time, we say that the volcano



AV)

104

10
107! 100
AlV)

(b)

F:gure 23. (a) Acoustie emission measured near Stromboli. Italy. The
two eurves show the strength of the rumbling fora period of one hour as
measured at two different distances from the voleano. (b) Size distribution
of t}le _bursts of acoustic emission sllown in (a). The distrt bution 154 power
law with exponent approximately equal to %2, the slope of the straight line

(Dioclati et aI., 1991 )
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hias become dormant” or the earthquake fault is “no longer active.” We try to
gompensate for our lack of ability to perceive the pattern properly by using
words, but we use them poorly. Nothing really happens in an earthquake
faulczoneina human lifecitme—the phenomenon is a STarionary process over

millions of years.

The Crust of the Earth Is Critical

In using nitty-gritgy computer models, we should not lose track of the greater
implications. Because of the robustness under modifications of the models,
the criticality does not realiy depend onour partic ular choice of model.

The picture that emerges is amazing and sim ple. The crusc of the Earth,
working through hundreds of millions of years, has organized itself into a
critical state through plate Lectonics, earthquake dynamics, and volcanic ac-
Livity. The crust has been set up in a highly organized pattern of rocks, faults,
rivers, lakes, ctc., in which the nextearthquake can be anything from asimple
rumble to a cataclysmic carastrophe. The observations summarized by the
Gutenberg—Richter law are the indications that this organizational process
has indeed taken place.

So far, we have been viewing earthquakes, volcanic eruptions, river net-
work formation, and avalanches causing turbidice deposition asseparate phe-
nomena, but they ace all linked together. Earthquakes cause rivers to change
their patrern. In Armenia after the 1988 earthquakes near Spitak, asmall river
had suddenly found a new path through the rocky landscape, and was dis-
placed hundreds of meters from the original riverbed. The shift was not
caused by erosion, as is usually the case. Also, it has been proposed thatrareex-
ternal events occurring over a large region, for examp[e, earthquakes or
storms, are the dominant source of the turbidite deposits, Le., the aggregation
of material at the continental shelf is not caused by a smooth transport
process. The distribution of turbidite deposits simply mirrors the staristics of
earthquakes.

In the final analysis, the crust of the Earth can probably be thought of as
one single critical system, in which the crincaliry manifests itself in many
different ways. The sandpile theory explains only one level in a hierarchy. The

sand must come from somewhere else—mavbe another crincal sysu:m—and




100 How Nacture Works

it must go somewhere else—perhaps driving yet another critical system. The
sandpile describes only one single step in the hierarchical process of forming
complex phenomena. Similarly, the crustal plates are fractal seructures them-
selves, indicating that they originate from anothercritical process, possibly as-

sociated with the convective motion of the material in the earth’s interior.

Pulsar Glitches and Starqual(es

Self-organized cruticality 1s not confined to the Earth, but can be found else-
where tn the universe. A possible example s a pulsar, which is a roratinyg star
consisting of neutrons. Sometimes che star’s rotational velocity changes sud-
denly. These changes in velocity are called pulsar glitches. Some of the ghitches
are small, corresponding to a small change ofvelocity; some are large, with a
large change of velociry.

Ricardo Garcia-Pelayo of the Unuversity of Texas in Austin and P Morley
of the Ilya Prigogine Center in Austin made an interesung observation. Using
data collected over twenty five years, they created a histogram of the number
of pulsar glitches of each size, and discovered that pulsar glitches also follow
the Gurenberg—-Richter law (Figure 24). They suggested that the pulsar
glicches are due o “starquakes” operating in the following way. The surface of
the pulsar 1s under enormous pressure from gravity. Somerimes the cruse
yields to this pressure, and partof it collapses. Morley and Garcia-Pelayo call
this collapse a “starquake.” A starquake causes the ve locity of the rotations of
the pulsar to increase, just as the rotation velocity of an ice skater increases
when she draws in her arms. A small starquake causes a small increase in fre-
quency, and a large starquake causes a large increase. The size of pulsar
glitches thus reflects the underlying size of the starquake. Morley has con-
structed a theory of the collapse of the pulsar. Of course, we know much less

about puisars than aboutour own p[anet, sothe rnodeling 15 quite speculative,

Blacl{ HOIQS an& Solar Flares

Black holes are massive objects from which nothing can escape, noteven light,

so we know abour their existence only from observation of the gravitational
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Flgure 24. Gutenl)erg—Richter law for pulsar glitc}\es (Garcia-Pelaya
and Morley, 1993).

force of the black hole working on othet cosmic objects. A black hole attracts
masstve particles from its environment, which are sucked into the interior of
the hale, never to be heard from again,

Recently, Mineshigi, Takeuchi, and Nishimori, in ]apan, suggested that
this process works very much like a sandpile. The material is temporarily
arranged in disks surrounding the black hole. Gas particles are randomly in-
jected into these accretion disks from the environment. When the mass den-
sity of the disk exceeds some critical value, the accumulated material begins to
drift inward as an avalanche, thereby emitting x-rays that can be observed
from the eacth. We might think of the process as an hourglass in which sand is
falling through a hole in the botton, while new sand is supplied from the our-
side. The fluctuations of the intensity of the x-rays have a 1/f spectrum. On
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the basis of observations of x-rays from the black hole Cygnus X-1,and some
simple computer modeling, the authors conclude that the formation of black
holes is an SOC phenomenon.

However, we dont't have to travel so far out in the universe to find sources
of x-rays with power law distribution. One of the finest and most spectacular
applications of the idea involves solar flares. In contrast to pulsars and black
holes, we can directly observe what is going on without too much guessing.
The sun emits solar flares all che time. Most flares are relatively small. Some of
them are very large, but much rarer, and cause disruprions of radio communi-
cation on earth.

Solar flares are observed to have a large dynamical range in both energy and
duration. The solar Hares emit x-rays, so the intensities of the solar flares can be
measured as the intensity of these x-rays. Figure 25 shows the distribution of
x-rays as measured by instruments on one of NASA’s spacecrafts, as presented
by B.R. Dennis. The diagram shows the frequency of flares versus their inten-
sity, as given by the measured “count rate.” Note the stratght-line behavior over
more than four orders of magnicude. The fattening of the curve for small flares
might well be due to difficulties in measuring these small flares in the back-
ground of: x-rays from other sources. The slope of the stra igheline, that s, the ex-
ponentT for the corresponding power law distribution, is approximately 1.6,

A couple of years ago [ presented chese data aca scientific colloquium on
self-organized criticality at the Goddard Space Center in Maryland. A mem-
ber of the audience rose and said, “I am the Dennis who made this plot. Actu-
ally, we have now much more data, and youcan extend the straight line scaling
regime over another two orders of magnitude.”

The physics of solar Hares is extremely complicated. The Hares are associ-
ated with magnetic instabilities in the plasma forming che sun. There has
been a good deal of theoretical effort to understand the basic mechanisms.
The convective motion of the gas pumps eneegy into the magneric field aca
steady rate. Atsome point, there isan instabiliry leading to a breakdown of the
pattern of magnetic field lines, which can be viewed as a sudden reconnection
of the field lines, like a knot on a shoelace that is released by cutting the lace
and gluing the ends together again, The reader might find it difficult to un-

derstand this picture. Don't despait—I don’t understand it either.

Earthquakes, Starquakes, and Solar Flares 103
1

10—2 -
o ]
g
g 1074
r
R

1076 -

10-8 T ' r

I I
10 102 103 104 105
Peak Count Rate {counts s—1)

Egure 25. Histogram ofx-ray intensity from solar ﬂares, as measured
I;;y the NASA satellite ISEE 3/ICE (Dennis. 1985). The diagram

shows the relative amount of flares with a given energy, as represented |:;y
the “counting rate. [ he data fita straight line over four orders of magni-
tude. The statisties 1s poor for the few large events,

Lu and Hamilton have constructed a simple theory of the solar flares
based on this type of physics. The local magnetic instability can be thought of
as the toppling grain of sand that triggers an avalanche of further magnetic in-
stabilities in the solar corona. This avalanche is the solar flare that we observe.
Lu and Hamilton constructed an excremely simple model, which has many
stmilarities with the sandpile models and the earthquake models studied by
Feder, Olami, and Christensen. The surface of the sun was represented by a
grid. On each square on the grid, a field F was defined. In contrast to earth-
quakc models, the field is a vector field, like an arrow with components in
three pe rpendicular directions. Indeed, pictures ofthe surface of the sun show
agrainy texture, much like the sand in the sandpile. The driving of the system
was represented by adding small random components to the vectors aca very
slow rate. When the “slope,” that is the difference between the magnetic field
atone site and the average of the field at the six neighboring sites, exceeds some
critical value, there 1s a magnertic breakdown. The breakdown is represented

by readjusting the vector fields at the unstable site and the neighboring stees,
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s that the local configuration becomes stable. However, this rearrangemen
can cause the slope at nearby sites to exceed the stability limit and cause fiyy.
ther breakdown.,

Amazingly, this simple theory can explatn the satellite observations .
mostexactly. Lu and Hamilcon calculated many different physical properties,
including the energy distribution of the flares and the durations of Hares with
a given energy. All of their results agreed with the satellite data. For instance,
the exponent for the energy distribution was found to be T = 152, which
compares well with the measured exponent of 1.6.

Lu and Hamilton could draw one simple conclusion: the corona of the
sun is working at the self-organized critical state. The theory explains why
huge solar flaces chat disrupt telecommunicarions occur, on average, every 1o
to 20 years. The large events are not periodic, but have statistics similar to large
earthquakes and mass extinction events in evolution. These events are at the
extreme rightend of the tails of the observed distributions. Ifwe have patience
enough, we are bound to experience even larger fares with more devastacing

effects, with a frequency given by extrapolating the critical behavior further,

cbapter 6

the “game of life:
complexity

15 criticality

So far we have visited many phenomena on Earch and in the universe. How-
ever, one gcophysical phcnomcnon was left ourt, the most complcx of all,
namely biological life. [n the early days of self-organized crivcality, we did not
think about biology at all; we had only inert dead marter in mind. However,
this situation has rad icall)' changed. The story isone in three acts, to be told in
the next three chapeers, with more to follow. We have constructed some sim-
ple mathematical models for evolution of an ecology of interacting species.
However, o apprectate the content of the theory that came out at the end, a
historical account of the acrivities scems most suitable.
Qur first act is a prologue that deals, not with life, but wich the

“GameofLife,” a toy model of the formarion of organized, complex,

societivs. We showed that the game operates at, or at least very
near, a critical state. The second part is very confusing and
frusceating, dealing with endless and rather fruitless dis-
cussions and collaborations with other scientists on

complex phenomena. This work has been associated
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with the Santa Fe Institute in New Mexico. This is not intended to be a sad
story. Iconly illustrates thar the road leading to new scientific insight can be
convoluted. Often, initial research 1s wrong, or at least the signal-to—noise
catio may be very low. The Santa Fe Institute has been sharply criticized,
mostly because the institute has been very open to outsiders and has admic-
ted science writers into the process ata preliminary stage, before solid resules
have been obtained.

After walking around in the dark, eventu ally there was light at theend of
the tunnel. As we shall see in Chapter 8, models relevant to biology do evolve
to the critical state. Not only that—some of the models are simple enough
that many aspects can be rigorously understood from pen and paper analysis
without relying eatirely on computer sicnulations.

The Game of Life is a cellular automaton. More than anyone, Stephen Wol-
fram, then at che Institute for Advanced Studies, Princeton, pointed out that
these simpledevices could be used as a laboratory for studying complex phe-
nomena. Cellular automata are much simpler than the continuous partial
differential equations usually used to describe complex, turbulent phenom-
ena, but presumably their behavior would be similar. Cellular automata are
defined on a grid similar to the one on which our sand model is defined. Wol-
fram mostly studied one-dimensional lattices, but cellular automata can be
defined in any dimension. On each point of the grid, there is a number that
can be either o or 1. Ateach time step, all the numbersin all the squartes are up-
dated simultaneously according to a simple rule. In one dimension, the rule
specifies what the con tentofeach cell ar the next time step should be, given the
state of that particular cell, and 1ts neighbors to the leftand to the right, at the
present time. The rule could be, for instance, that the cell should assume 1 if
two or more of those three cells are 1 otherwise o,

One can show that in one dimension there are 28=256 such rules. Start-
ing from, say, a random conﬁguration of os and 1s, some rules lead toa boring
state, in which the numbers freeze into a static conﬁguration after some time.
Sometimes the rules lead to a "chaotic” state, in which the numbers will goon
changing in a noisy way without any pattern, like a television channel where
there is no signal. Sometimes, the rule leads to regular geometrical patterns.

Wolfram speculated that there was a fourth class that unforru nately was never
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defined (and therefore not found), in which the automaton would ElIOduce
new complex patterns forever.

It has now been demonstrated by compurer simulations, in particular by
Dietrich Stauffer of the Univetsity of Cologne, Germany, that none of the
one-dimensional automata show truly complex behavior; they can all be
classified into the first three classes.

Wolfram never produced any theory of cellular automara. Eventually, he

left science completely, and went on to form a computer software company,
whose greatestachievement is the program Mathematica for automatic manip-
ulation of mathemaric expressions. Wolfram often expressed the view that the
auromarta could be “compurationally irreducible,” ‘or undecidable, which
means that the only way to find the outcome of a specific rule with a specific ini-
dal condition is to simulate the automatonon a computer. However, while this
view mightseem like the end of the story fora mathematician, this does not pre-
vent the physicist from a statistical, probabilistic description of the phenome-
non. Many problems that physicists deal with, such asdynamic models of phase
transitions, might well be undecidable. The problem of computational irre-
ducibility doesn'tkeep the physicists awake at nighe, since there are approximate
methods available that give eminently good insight into the problem.

In two dimensions, there ts an even richer world than in one dimension.
Often, the neighborhood that is considered when updating a site is restricted
to eight neighbors—rthose ac the left, right, up,and down positions, and those
arthe fourcorners at the upperand lower leftand right positions—and to the
site 1tself, There are a wotal of 25%2 possible rules specifying how to update a
cell, thatis a number written as 1 followed by more than 150 zeros. It is obvi-
ously impossible to investigate them all, even with a computer.

Many years before Wolfram, the mathematician John Horton Conway
of Princeton University had studied one of these zillions of two-dimensional
rules called the Game of Life. Presumably he was trying to create a model of
the origin of complicated structures in societies of living individuals. Al-
though the Game of Life has never been taken seriously in a biological con-
text, it has nevertheless served o illustrate that complex phenomena can be
generated from simple local rules. The Game of Life was described in a num-

ber of classic articles by Martin Gardner in Scientific American in the beginning
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of the 1970s. Gardner involved his readers in an exciting hunt for amazingly
complicated and fascinating phenomena in this simple game.

The game is played on a two-dimensional grid as follows. On each square,
there may or may notlive an individual. A live individual is represented by a 1,
or a blue square n Plates 6 through 8. The absence of an individual is repre-
sented by a0,0r a light gray square. Ateach time step, the toral number of live
indtviduals in the nine-cell neighborhood of a given cell is counced. If that
number is greater than 3, an individual at thac cell dies, presumably of over-
crowding. If the number is 1 or o, he will die of loneliness. A new individual is
born on an empry square only if there are prectsely three live neighbors. The
red sites are empty sttes where a new individuial will be born ac che nexr time
step. In che ﬁgures, individuals who are going to die at the next updare are
shown as green squares, and empty sites where an individual will be born are
shown as red squares. Notice that each red site indeed is surrounded by pre-
cisely three blue cells among its eighe neighbors.

A myriad of complicated structures can be constructed from these rules.
The figures show some stable blue clusters of live individuals. Note that the
number of live neighbors in the neighborhood of cach live siee is either 2 or 3,
There are also conﬁgura[ions that propagate through the lactice. The sim-
plest is the glider shown in Plate 6 near the lower right coraer. [n a small num-
ber of time steps, the glider conﬁguration reproduces self, ara position that
is shitted in a diagonal dicection of the grid. Te keeps moving unul ithitssome-
thing. The gray arcas show where there has been recent acuvity, so the path of
the glider is shown as a gray crail behind ir. “Blinkers” shift back and forth be-
tween two states, one with three individuals on a horizonual line, the other
with three individuals on a vertical line. The blinking comes about by the
death of two green sites and the simultaneous birth at owo red sites. There are
more complicated formations involving four blinkers, as shown in Plate 6.
There are incredibly ingenious configurations, such as glider guns, which pro-
duce gliders at a regular rate and send them off in the diagonal direction.
Therc are even structures that bounce gliders back and forth. The number
and variety of long-lived structures in the Game of Life is evidence of its emer-
gent complexity. Conway's imterest in the game was (n 1ts ability to create this

fascinaring zoo oforganisms.
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Michael Creutz is a particle physicist at Brookhaven Laboratory, best
known for his “lattice gauge theories” in particle physics. In 1988 Mike
thought of applying computational methods to relacivistic quantum field
theory, the current theory of elementary particles. The particles were de-
scribed by a statistical sampling over a three-dimensional grid, rather than in
continuous space, to make the problem compurtationally tractable. Kan
Chen, Michael Creutz, and I became interested in the Game of Life. Our in-
terest was not in “stamp collecting” all the complex structures, but in the gen-
eral understanding of what makes the Game of Life tick. Whar is special
about the particular rule that Conway had chosen?

If one starts the game from a totally random conﬁguration of live indi-
viduals, the system will come o rest after a long time in a configuration in
which there are only stable static structures and sim ple blinkers. All moving
objects, such as the gliders, will have died out. It appeared to us thac the Game
of Life might operate atacritical state. To test this hypothesis, we made a care-
ful computer simulation.

We started from a random configuration and let it come to rest in a static
configuration. Such a static configuration, with stable clusters and blinkers
only, is shown in Plate 7. We then made a stngle “mutation” in the system, by
adding one more individual, or removing one at a random position. This is
analogous to the addition of a single grain to the sandpile model at a random
position. The addicion of a single individual may cause a live site to die because
the number of live individuals in its neighborhood becomes too large. It may
also give rise to the birth of a new live site by increasing the number of live neigh-
bors of dead sites from 2 to 3. This creates some activity of births and deaths for
a while, where new clusters of living objects are coming and going, and gliders
are moving back and forth. Eventually the system again comes to rest atanother
conﬁguration with static objects, or simple periodic blinkers, only. Then we
would make another mutation, and wait for the resulting disturbance rodie ouc.
Sometimes the Game of Life comes to rest after a small number of extinction
and creation events, sometimes after a large number of events.

We repeated the process again and again. The process that starts when a
new individual 1s added or removed and stops when a stauc conﬁgura[ion is

reached 1s called an avalanche. The size s of the avalanche is the total number
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of births and deaths occ urring before the avalanche stops. The duration ¢ of
the avalanche is the total number of time steps involved. The size s is greater
than the duration ¢ because at each time step there are usually many births
and deaths raking place simultaneously. Plate 8 shows a snapshort of an
avalanche in progress. The gray acea indicates sites where at least one individ-
ual was born or died during the avalanche.

Because of the magnitudes of the largest avalanches, which involved u pto
too million births and deaths, the computations were very time—consuming.
Amazing[y, we found ourselves, sy pposedly serious scientists at a prestigious
national laborarory, playing computer games for hundreds of hours on the
biggest mainframe com puter at the lab.

The distribution was the usual power law, shown in Figure 26. The expo-
nent, measured in the usual way as the slope of the curve, isT = |, 3. This shows
that the Game of Life is critical! Surprisingiy, one can make a theory for this’
value of 7 based on a connection of the Game of Life to sophisticated theories

of particle physics, as we shall see in Chapter 9. The number of time steps fol-
lows another power law, with an ex ponentthatcan be calculated from the same
theory. This mind-boggling connection was found a few years later by Maya
Paczuski, a Department of Energy rescarch fellow working at Brookhaven.

Many other computer simularions have been performed, following our
original work. Some of this work was performed on massive parallel com-
puters wich capaciry well beyond ours. Some researchers, including Preben
Alstrgm of the Bohr Instituce in Denmark, confirmed our result of critical-
try. Others claimed that there actually is an upper cutoff of the size of
avalanches; Jan Hemmingsen ac the Julich Research Insticute in Germany
found no avalanches exceeding one billion ﬂips, but there are so few of those
large avalanches that the Statistics are too poor to make firm claims. In any

case, the system is ex[remely close, within 1 partin 1oo million, to being cric-
ical. However, if these lacter scientists are right, i might be an incredible ac-
ctdent that the Game of Life s critical. Dietrich Seauffer investigated system-
atically millions of two-dimensional celluiar auromata and was not able to
find a single additional critical model. This indicates that the Game of Life

does not exhibit robust criticality. If you change the rules, you dcstroy the
criticali[y.
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Figure 26. Distribution of avalanche sizes in the Game ofLifET}\:
curves for different lattice L cover each ot_:iler'wl'l_en qlotted v_s.'.sf 1 li;at]1 er
than L. This demonstrates finite size scalmg. indicative of eritical behav-
1or. The exponent of the power law st = 1.30.

Sclf-organized eritical systems must be precisely ciitic.al withour .ariy tucr:-
ing. If the criticality in the Game of Life 1s not self-organized, then lt. is an:i
dental. John Conway must have tuned it to bt extrcmcly: near tohcrmc ! cqifl
Conway is the watchmaker in the Game of Life! We don t:nowl oi.v 20[]
Conway experimented before he acrived at the Garm? of Life, unique ;i mg_
millicns of millions of other rules. He was incerested in the cndoge.nous co
plexity of his creatures. Butour calculations show t-hflt at the same time t?at hti
had succeeded in constructing something thatexhibited a vast amountlc‘) ccrm;
plexity, he had (inadvertently, [ guarantee) tuned the system to t;e c.riuclal.hef
the tme of Conway's work, little was known about the conceprofcriical p
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about criticality. Among those many possible rules, he had arrived precisely ac
the one that is critical. I still wonder what in the world made him hit upon this
absurdly unlikely model, in view of the fact that the world's lacgest computers
have not yetbeen able to come up with another complex one.

Only the critical state allows the system to “experiment” with many dif-
ferent objects before a stable complex one is generated. Supercritical, chaotic
rules will wash out any complex phenomenon that might arise. Subcritical
rules will freeze into boring simple structures.

The message isstrikingly clear. The phenomena, like the formation of the
“living” seructures in the Game of Life, that we intuitively identify as complex
originate from a global critical dynamics. Complexity, like that of human be-
ings, which can be observed locally in the system 1s the local manifestation of
a globally critical process. None of the noncritical rules produce complexiry.

Complexity is a consequence of criticality.

chapter 7
15 life a
self-organized

critical

phenomenon?

The step from describing inert matter to describing biological life seems
enormous, but maybe itisn't. Perhaps the same principles that govern the or-
ganization of complexity in geophysics also govern the evolution of life on
earth. Then nature would notsuddenly have to invent a new organizatonal
principle to allow live matter to emerge. It might well be thatan observer who
was around when life originated would see nothing noteworthy—only a con-
tinuous transition {which could be an “avalanche”) from simple chemical re-
actions to more and more complicated interactions with no sharp transition
point indicating the exact moment when life began, Life cannot have started
with a chemical substance as complicated as DNA, composed of four
different, complicated molecules called nucleotides, connected into

a string, and wound upina double helix. DINA must itselfrepre—
sent a very advanced state of evolution, formed by masstvely
contingent events, tn a process usually referred to as pre-
biotic evolurtion. Perhaps the processes in that eacly pe-

riod were based on the same principles as biology is
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today, so the splitting into biotic and prebiotic stages represents just another
arbitrary division in a hierarchical chain of processes.

Maybe a thread can be woven all the way from astrophysics and geo physics
to biology through a continuous, self-organized critical process. At this time
all the intermediate stages of evolution progressing from chernustry to life are
distanc history, so we see geophysics and biology as two separare sciences.

Biology involves interactions among millions of species, each with nu-
merous individuals. One can speculate that the dynamics could be similar to
that of sandpiles with millions of interacting grains of sand. However, the re-
alization of this idea in terms of a proper mathemarical description is a long
and tedious process. Much of my thinking along these lines took place at the
Santa Fe Institute, mostly through interactions with Stuart Kauffman, who
resides there. For three years Stuartand I were walking around in circles wich-
out being able to make a suitable model of evolution, buc eventually this work

paid off in a racher surprising tuen of events.

The Santa Ea Institute

The Santa Fe Institute in New Mexico is a tvely center for exchange and
debare on complex systerns: In the words of the economist Brian Arthur of
Stanford Univecsity, now the Citibank Professor at the institute, “Te is the only
place where a biologist can come and hear an economist explain how a jeten-
gine works.” The institute brings together many of the most imaginative
thinkers from vastly differenc fields inan open environment, The meetings at
Santa Fe are conrinuous brain storms.

The institute is the brainchild of George A. Cowan, former head of re-
search at Los Alamos National Laboratory near Santa Fe. Itsoon received the
backing of top scientists in a number of fields, including Philip' W Anderson,
Nobel Prize winner for his work on condensed matter physics, Murray Gell-
Man, Nobel Prize winner for the discovery of quarks, which are among the
most fundamental of all particles, and Kenneth Arrow, economist and Nobel
Prize winner for the general equilibrium theory of economuics.

The reductionist approach has always been the royal road to the Nobel
Prize. Ironically, the philosophy of the institute is quite orthogonal to the re-

Plate 1. Snapshots ofpropagating avalanche 1n the sanclpile model. The colors
gray, green, blue, and red indicate heights of0.1.2, and 3, respectively. The
lig]\t blue show the columns that have toppled at least once. As the avalanche
grows, the light biue area increases. (Courtesy of Michael Creutz.)



Glen Held and co-workers. The ﬂuctuating mass

The IBM sandpile experiment. performed by
of the sandpi]e on the scale 1s nnalyzec] by asmall PC.

Plate 2.

Plate 3. Sandpile experiments By the University of Micl’ligan group led by.
Michael Bretz and Franco Nori. (a) Tiited sanc!pile. (b) Conical pnle. The sand-

pile shown 1s the digital image from the video recorder.



Plate 5. The self-organizecl fractal landscape corresponding to the river net-
work 1n Flgure 20.The colors from yel]ow to green, blue, and eyan reflect
increasing elevation. (Rigon etal., 1994)




Plate 10. Successful flring patterns in the fast sw;tc}ling phase. The two sets of
input neurons are colored red and green, respectively. For (a) the red input 1 the
cells #10 and #25 of the bottom row must be triggered: for (1)) the green signal
in the output cells #7 and #12 must be tr;ggerecl. The yellow squares show
which outputs are f-lring for the two ;nputs .Successful patterns after the removal
of a block of thirty REUrons (e) and (d) Note the difference from the orig;nal
response. (Stassinopoulos and Bak, 1995).
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ductionist science which propelled those gentlemen to stardom. Corﬁplexity
deals with common phenomena in different sciences, so the study of com-
plexiry benefits from an interdisciplinary approach. However, because of the
sociology of science, it takes someone at the top to change the course of sci-
ence. Most scientists in the rank and file do not venture into new areas that
have not been approved from above. There is good reason for this since young
scientists are dead in the water if they step out of traditional disciplines.

Traditionally, cross-disciplinary research has not been very successful.
The fundamental entities dealt with in the various sciences are completely
different atoms, quarks, and strings in physics; DNA, RNA, and proteins in
biology; and buyers and sellers in economics. Actempts to find common
ground have often been contrived and artificial. At universities, the different
scienices are historically confined to specialized departments with lictle inter- -
action. This has left vast areas of science unexplored. However, a new view is
emerging that there could be common principles governing all of those sci-
ences, not directly reflected in the microscopic mechanisms at work in the
different aceas. Maybe similariries arise due to the way the various building
blocks interact, rather than to the way they are composed.

Since the Santa Fe Institute does not have a permanent staff of scientists,
it can change its emphasis quickly when new ideas come up. A number of ex-
ternal profcssors are associated with the institute; I am fortunate enough to be
one. In contrast, teaditional universicy and government Iaboratory environ-
ments have a tendency to freeze into permanent patterns as their scientists be-
come older. Typically,acou ple oflong-term visitors, some short-term visitors,
and a few young postdoctoral fellows work at the insticute. In addition, scien-
tists from vacious fields come rogether atseminars and conferences.

These meetings force us to place science in a greater perspective. In our
everyday rescarch, we tend to view our own field as the center of the world.
This view is strengthened by our peer groups, which are, because of the com-
partmencalization of science, working along the same line. No mechanism
for changing directions exists, so more and more efforts go into more and
more esoteric aspects of well-studied areas that once paid off, such as high-
temperature su perconduc tivity, surface structures, and electronic band struc-

tures, without any restoring force. Nobody has an incentive to step back and
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ask himself, “Why am I doing this?” In fact, many scientists are put off if you
ask this question.

This state of affairs struck me atone of the meetings arranged by the insti-
tute. Brian Goodwin, a biologist from England with his own view of biologic
evolution expressed in his book How the Leopard Got Iis Spois, had invited twenty
scientist to a meeting on “Thinking about Biology.” Who did he invite? A
COupIe of biologists, two engineers, some com puter scientists and mathemati-
cians, a medical doctor, and some physicists, including me, and some individu-
alswhocould notbe placed in any category. Goodwin is not in the mainstream
of biology-—otherwise he wouldn't be at the institute, but would probably be
working hard on a molecular biology problem ac his home institution.

“What the heck is this all abouc?” I asked upon arriving. “You are arrang-
ing a meeting entitled “Thinking about Biology, so why don't you invite
someone who 15 actually thinking about biology?" “This is it Brian ex-
claimed. “There is essentially nobody else thinking about the fundamental
nature of biology.”

How can that be? In physics at thar time (and probably even now) there
were an estimated 15,000 scientists working on high-temperature supercon-
ductivicy, a subject of some general interest and possible technological im por-
tance, but nothing that would justify this level of activity. At the same time,
only a scattered handful of oddballs were working on understanding life it-
self, perhaps the most interesting of all problems.

My first visit to the institute was a couple of years before this biology
meeting, in the fall of 1988. I was called by one of my physics colleagues,
Richard Palmer of Duke University. “We are a couple of people interested in
your ideason sandpiles,” he said. “Brian Arthur is running a program here on
economics, and he would like to invite you to come.” Economics? What did 1
know about economics?

The institute was about to change my views of science, and came o affect
my research profoundly. I fell in love with the place immediately. Discussions
would rake place outdoors in a little cou rtyacd in the center of the institute, or
at one of the many nearby New Mexican restaurants. Numerous informal,
but loud, discussions, on life, the universe, and everything else ook place at

the Canyon Cafe, our “faculty club.”

Is Life a Se[f'—Organized Critical Phenomenon? 117

The program was not really about economics, bur about common prob-
lems in many sciences including biology, geophysics, and economy. Stuart

Kauffman, originally a medical docror but now working on myriad funda-

" mental issues in biology is the heart of the institute. I soon learned that Stu is

a unique scientist: fun, playful, and imaginauve. Stu is one of the few biolo-
gists who are willing and able to view things in an abstract way, to view reality
as justone example ofa general process.

Igavea shortinformal presentation ofour sandpile model, and our simu-
lations of the Game of Life. Our article was about to appear in Nature. In par-
ticular, I jokingly put forward the speculation that real life operates at the

critical point between order and chaos.

Sandpiles and Punctuated Equilibria

In 1989, I returned to the instttute for another month. “I have ceally been
looking forward to meeting you again,” Stu exclaimed, putting his hand on
my shoulder. “You won’t believe how far we have taken your ideas of sand-
piles.”

And then he told me about Stephen Jay Gould and Niles Eldridge’s ideas
of “punctuated equilibria” in evolution. Punctuated equilibrium is the idea
that evolution occurs in spurts instead of following the slow, but steady path
that Darwin suggested. Long periods of stasis wich fittle activity in terms ofex-
tinctions or emergence of new species are interrupted by intermittent bursts of
activiry. The most spectacular events are the Cambrian explosion 500 million
years ago, with a proliferation of new species, families, and phyla, and the ex-
tinction of the dinosaurs about sixty million years ago. The evolution of single
species follows the same pattern. For long periods of time, the physical proper-
ties, like the size of a horse or the length of the trunk of an elephant, do not
change much; these quiet periods are interrupted by much shorter periods, or
punctuations, where their attributes change dramatically. Darwin argued and
believed strongly that evolution proceeds ata constant rate.

Indeed, sandpiles exhibit their own punctuated equilibria. For long per:-
ods of time there is little or no activiry. This quiescent state is interrupted by

rapid bursts, namely the sand slides, roaming through the sandpile, changing
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everything along their way. The similarity between the avalanches in the sand-
pile and the punctuations in evolution was astounding. Punctuations, ot
avalanches are the hallmark of self-organized criticality. Not long after my first
visit, Stu had plotted Sepkoski's data for extinction events in the evolutionary
history oflife on earth the same way we had done it for the sandpiles, and found
that the data were consistent with a power law, with the large extinction events
occurring ac the tail of the distribution (Figure 5). Could it be that biological
evolution operates at the self-organized critical state? The tdea had enormous
implications for our views of life on earth. Life would be a global, collective, co-
operative phenomenon, where the complex structures of individual creatures
would be manifestations of the dynamics of this critical state, just like the or-
ganisms in Conway’s Game of Life. Buc how could one express the idea in a the-
" oretical framework, in view of the inherent difficulties that were encountered

when modeling a system as straightforward asa sandpile?

Interacting Dancing Fitness Landscapes

Before going further let us take a look ar the important concept of “fitness
landscapes,” described by Sewall Wright in a very remarkable arcle, “The
Shifting Balance Theory,” from 1952 (reviewed in Wright's 1982 article}. The
physical properties of biological individuals, and thus their ability to survive
and reproduce, depend on “traits” of that individual. This ability ro survive
and reproduce is referred to as “fitness.” A trait could be the size of the indi-
vidual, the color or the thickness of the skin, che ability of the cell o synthe-
size certain chemicals, and so on. The craics express the underlying genetic
code. Ifthere isa change of the genetic code, that is a change in the genotype,
there may or may not be a change of one or more of these traits, that is a change
in the physical appearance or phenotype, and therefore a change in fitness.
Wright suggested that fitness, when viewed as a funcrion of the many-
dimensional trait-space with each dimension representing a trait, forms a
rough landscape, as illustrated in Figure 27. Since the traits reflect the under-
lying genes, one might think of the fitness as being a function of the genetic
code, represented by the iictle black and white squares. Some genetic combi-

nations correspond to particularly fic individuals and are shown as peaks in
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genetic code

Figure 27 Sewall Wrig}lt's fitness landscape. Note that the species
located at low—lying peal(s have smaller barriers (valleys) to eross to
improve their fitness than the species located at the high pealts.

the diagram. Some other combinations give rise to individuals wich litcle via-
bility, and are re presented by valleys. As the genetic code is varied over all pos-
sible combinations, the fitness curve traces out a landscape. There are numer-
ous tops and valleys corresponding ro cthe many very different possibilicies of
having fit{and unfic) genes. A muration corresponds to taking a step in some
direction in the fitness space. Sometimes that will be a step down, to a state
with lower fitness, and sometimes that would be a step up, o a state with
higher fitness.

A species can be thought of as a group of individuals localized around a
point in the ficness landscape. In the following discussion I will take the lib-
erty of representing an entire species population in terms of a single point,
which I will refer to as the “fitness of the species.” Each individual member of
aspecies undergoes random mucations. The ficter variants, by definition, will
have larger survival rates, and will proliferate and rake over the whole popula—
tion. Downhill steps will be rejected, uphill steps accepted. Hence by random
mutation and selection of the ficter variants, the whole species will climb up-
hill. Ac this level chere is not much difference berween Darwin’s selection of
fitter variants among random mutation and Lamarque’s picture of evolution
as being directed toward higher fitcness—itisonly a matter of time scales. Both
lead to hill climbing. Darwin’s theory provides 2 mechanism for Lamarque'’s

directed evolution. In other words, even if Lamarque was wrong and Darwin
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was right, this may not have any fundamental consequences for the general
structure of macroevolution.

Many early theories of evolution, including Fisher's celebrated work, The
Genetical Theory of Natural Selection of the 19308, can be understood simply asa
detailed description of this uphill climbing process in a situation where the
mountains have a constant slope, and are inﬁnitely high. The fitnesses in-
crease forever, implicitly representing the view that evolution is progress.
Fisher’s math didn’t even touch the complexity and diversity of evolution—
everything was neat and predicrable.

Unfortunately, there is a pervasive view among biologists tharevolution is
now understocod, based on these early theories, so that there is no need for fur-
ther theoretical work. This view isexplicitly stated even in Dawkins’ book The
Blind Watchmaker Nothing prevents furcher progress more than the belief that
everything is already understood, a belief that has repeatedly been expressed
in science for hundreds of years. In all fairness, all that Dawkins is saying is
that Darwin's mechanism is sufficient to understand everything about evolu-
tion, but how do we know in the absence of a theory thar relates his mecha-
nism at the level of individuals to che macroevolutionary level of the global
ecology of interacting species?

In Sewall Wright's picture, however, the uphill climb must necessarily
stop when the fitness reaches a peak. When you sit on top of a mountain, no
matter which direction you go, you will go downhill. If we take a snapshot of
biology, we can think of the various species as sitring near peaks in their land-
scapes. To get from one peak toa berter one, the species would have to undergo
. several simultaneous, orchestrated mutations. For instance, a grounded
species would have to spontaneously develop wings to be able to fly. This is
prohibitively unlikely. Therefore, in Wright's picture evolution would come
to a happy end when all species reach a local maximum. There may be better
maxima somewhere else, but there is no way to get there. Evolution will gereo
a “frozen” state with no further dynamics.

What is missing in Sewall Wright's fitness landscape? Scuart Kauffman
suggested that the important omission was the interaction between species.
Species affect each other’s fitnesses. When a carnivorous animal develops

sharper teeth, that ceduces the fitness of ics prey; vice versa, if the prey develops
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thicker skin, or if the animal becomes quicker, or if it becomes extincr, that
affects the livelihood of its prospective predators. In Stuart’s favorite example,
ifa frog develops a sticky tongue in order o catch a fly, the fly can react by de-
veloping slippery feet. Diagrammatically, the interacrive ecology can be illus-
grated as in Figure 28, The squares represent species. An arrow from one
species to another indicates that the latter species depends on .thf: Physical
Properties of the ficst. Sometimes, the arrows point only in one direction. For
jnstance, our body conrains numerous vicuses and bacteria that benefit from
us, but don’t affect us. Often the arrows point in both directions when the two
species have symbiotic relations to each other, or when a parasite benefics
from, but harms, its host. Biology might be thought of as the clynamics ofa
collection of interactive species living ina global ecology.

The fitness landscapes of the various species are “deformable rubber

landscapes” that interact with one another. The landscapes may change.
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Flgure 28. Diagram of interaeting species. The squa.res represent o
species 1n an ecology. An arrow pointmg from one species to another u}dn-
cates that the latter 1s affected by the former. Sometimes the arrows go1n

one direction, sometimes 1n both.

)




122 How Nature Works

When a species mutates and changes its own properties, it changes the shapes
of the landscapes seen by other species. A species living happily on top of one
of the hills of its own fitness landscape may suddenly find itself way down the
slope of the mountain. Burt then the species can respond by climbing to a new
top, by random mutation and selection of the fitter variant. Using Stuart’s
metaphoric example: A frog may improve its ability to catch flies by develop-
ing a sticky tongue; the ﬂy can respond by developing slippery feet. The ﬂy has
to evolve just to stay where it was before. It never actually improves its fitness;
it must evolve in order to simply sucvive as a species.

This is called the Red Queen effect, after a character in Lewis Carroll’s
Through the Looking-Glass. “"Well, in our country, satd Alice, still panting a little,
‘you'd generally get to somewhere else—if you ran very fast for a long time as
we've been doing.” ‘A slow sort of country! said the Queen. ‘Now, here, you see,
1t takes all the running you can do, to keep in the same place.””

We are living in “the fast place” where you have to run in order to go

nowhere, not the slow place with a static landscape. In the absence of interac-

tions berween species. evolution would come to an abrup[ halr, or never get
started in the fiest place. Of course, the fitness landscapes could change be-
cause of external effects, such as a change of climare that would change the
landscapes of all species. '

The solution is to consider coevoltrion of interacting species, rather than
evolurion of individual species in isolation that comes to a grinding halt. Co-
evolution of many species can be described conceptually in terms of fitness
landscapes tha_l: affect one another. Stuart Kauffman calls them “interacting
dancing fitness landscapes.” This picture isa grossly simplified representation
of the highly complicated population dynamics of real species coevolving in
the real world, but nevertheless it represents a monumental computational
challenge to find the ramifications of this view. It could provide a valuable
metaphor. The competition between two species is quite well understood in
terms of Predator-prey models, but whart are the consequences for a global
ecology with millions of interacting species?

Stu and Sonke Jonsen, a postdoctoral fellow from Norway, were im-
plementing fitness landscapes in terms of interacting models, called

*WNKC models.” They represented each spectes by a string of N o’s and 1's,
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(100000. .. 111100), representing the states of N genes or traits. In the sim-
plest version of the model, they would associate a random number to each of
the 2N configuracions, representing the fieness of that configuration. A liccle
black square might represent a 1, a white square a 0. The randomness repre-
sents our lack of knowledge of the couplings. This version is the same as the
“random energy model” introduced by Bernard Derrida of the Untversity of
Paris, in a different context. So far, the model represents a single landscape. If
one tries to flip a single bit, from 1 to 0 or from o to 1, one finds either a lower
finess or a higher fitness. Selecting the higher value represents a single step
uphill in the fitness landscape.

Thus, a very com plicared process, namely the muration of a single indi-
vidual and the subsequent selection of that ficter state for the whole species
population, was boiled down to a change of a single number. A single flip cor-
responds to a “muration” of the entire population ofa given species, Or, equiv-
alendly, extincrion of one species followed by the replacement of another with
different properties! Here and in the following discussion this process is re-
ferred 1o as a “mutation of the species.”

Many evolutionary biologists, such as John Maynard Smith, the author
of the bible on traditional evolutionary thinking, The Theory of Evolution, insist
on locating the mechanisms ofevolution in the individual, and find concepts
like species muracion revolting. Of course, the basic mechanisms are operat-
ing at the indwidual level; we are simply using a more coarse-grained de-
scription to handle the entire macroevolution, Each step involves many gen-
erations, Stephen Jay Gould uses the same terminology in some of his books,
precisely to be able to discuss evolution on a larger scale than is usually done
by geneticists. Not even the gradualists would question that differential se-
lection of the fitter varianc leads to the drift of entire species. [t is precisely
this drift of species that is eventually described by Fisher's theory. The coarse
graining does not in itself produce “punctuated equilibria” since we envision
this single step to take place in a smoorh, gradual way, just as a single falling
grain, containing many individual atoms, does not constitute a punctuation
or avalanche in the sandpile. In the final analysis, if using a ﬁne—enough time
scale, everything, even an earthquake, is continuous. Punctuated equilibria

refers to the fact that there is a vast difference in time scales for the periods
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of stasts, and the intermitcent punctuations. The periods of stasis may b
1oo miilion years, while the duration of the punctuations may be much less
than a million years.

Eventually, when the process of selecting the fitter varianc is continued
for some time, the species will eventually reach a local peak from which it can-
not improve further from single mutations. Of course, by making many coor-
dinared mutations the species can transform into something even more fiy,
but this is very unlikciy.

Each species is coupled wa number Cofother Species, or, more precisely,
toone parucular craic (which could be decided by one gene) incach of Cother
species, where Cis a small mnteger number. This sicuation is described in Fig-
ure 27, where the smalt black and white squarescou !d representygenes that are
1and o, respecuvely: The nvo genes chat are coupled could represent, for in-
stance, the slippery foot of the tly, and the stickiness of the surface of the
tongue of the frog, If that paraicular gene inone of the species tips, the viabil-
iy of the other nteractng species is atleceed. The fieness of the frog depends
notonly on it own genene code, but also on the geneue code of the fly. In the
model, this coupling 15 represented by assigning a aew random number o 1
spectes it the gene to which i s coupled mutates. The intcrncring Spcies
could either be neiwhbors ona two-dimensional arid, or lhuy cottld be chosen

randomly among the N — ( other spretes,

A mathematical biologus[ should in principiv be able to study this type ol

system by using the much more cumbersome methods ofcouplcd Jilerenonl
cquations for popu[ation d}'mmic:., called Lotka-Volierra cquations, or
rephcator equations. In chose cquations, the increase or decrease of the popu-
lation of a speies s expressed in terms of the populations ofother species. Bu
the computational costs are 5o tremendous that 1t limics che svstems that can
be studied o include ve ry few in teracting spectes, say two or theee. Indeed, the
dynamics of coevolution of a small number of"spccics have been previously
studhied, for instance in the conrext ofprcd;1[()1’-pr€)'. ot parasite-host cocvolu-
uon. This is insuthcicnr for our purpases, where the conjecture is that the
complexity comes from the limit ofnmn)' in[cmcu'ng spectes.

Thelimit by which the number oFspccics isvery farge, in practice infiniw

had never before been imx‘stigatcd. The spirtt is the same as for our sandpile
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or shider block models for earthquakes. Instead of following the details of the
dynamics, a coarsened representation tn terms of integer numbers is chosen.
A spectes is either there or not. We do not keep track of the population of the
species, just as we did not keep track of the rotation angle in our pendulum
models.

Because of their simpler, though stll enormously complicared structure,
Kauffman and Jonsen were able o study the situation in which there was a
large number of species, cach interacting wich C other species. They stareed
from an arbirrary conﬁguration in which each of, 52y, 100 species were as-
signcd arandom sequence of numbers 1 and o. Ac each time step, thcy made a
random mutation for cach species. If this would improve the fitness of the
spccies, the murtation was accepred, thatisa singlc 1 was rcplaccd by 20,0rvice
versa, If the fitness was lowered, the mutation was rejected, and che original
configuration was kepe.

It che value of C is low, the collective dynamics of the veology would tun
only for ashort time, The first mutation might knock another specwsoutofa
ficness maximum. That spectes will mutare o improve its fitness. This might
aflect other spectes., Evcntunll}; the domino process will stop at a “frozen”
configuration where all the species are at the top ofa fitness peak, with no pos-
sibill('}' of‘going to [tteer staces through single mutations, All attempts to cre-
ate fieeer species by Hipping asingle gene would be rejected at that point. This
s simular to the situation with no coupling beeween species. In theoretical bi-
ology such astate is called an “cvolutionary stable state” (ESS), and has been
studied in great derail by mathematical biologists, tn particular by John May-
nard Smuth, Economists call such states, in which no one can jm prove their
situation by choosing a different strategy “Nash equilibria.” There is a rather
complere mathematical theory of those equilibria derived wichin the mathe-
marical discipline known as gamc theory. Howeser, game theory does notdeal
with the tmportant dynam ial problem of how to get o that state, and where
you go once the state ceases to be stable.

If. on the other hand, each species interaces with many other species, that
s, Cis large, the system enters into a “chaotic” mode in which Species are un-
able ro reach any peak in their firness landscape, before the environment, rep-

resented by the state of other species, has changcd the landscape. This can be
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thought of as a collective “Red Queen” state, in which nobody is able o get
anywhere. Evolution of the single species to adjust to the ever-changing envi-
ronmentis a futile effort.

Both these extremes are poor for the collective well-being of the system,
In one case, species would freeze into a low-lying peak in the ficness land-
scape with nowhere else to go. “Everybody is trapped in the foothills,” Stu ex-
plains. In the second case, evolution is useless because of the rapidly varying
environment. As soon as you have adjusted to a given landscapc, the land-
scape has changed. There is no real evolution in either of those two cases,
This leaves buc one choice: che ecology has to be situared precisely at the erit-
ical state separating those extremes, that is, at the phase transition berwern
those extremes. Here, the species could benefit from a changing environ-
ment, allowing them o evolve to better and better fitness by using che slowly
changing environment as stepping stones, withour having that progress
eliminated by a oo rapidly changing enviconment. “The eritical state 15 a
good place to be!” in Stu's words. “There we are, because thats where, on av-
crage, we all do best.”

This shows a kind of free-marker fundamentalist view of evolution. Ifltt
to ieself the system will do what's best for all of us. Unfortu nacely, evoluton
(and the free market) is more heartless than this.

St and Iworked on various moditications of the model, includ g maodels
of random glasses borrowed from solid state physics. Ina glass, the atoms can
siLin many ditferent random arrangements that are stable, just like the Spedics
in Kautlman's NKC models. We studicd the models in a way thar was analo-
gous to the method by which Kan Chen, Michael Creutz, and [ had studied
the Game of Life. First we would waic for the system to relax to a frozen s,
Then we would make one arbitrar)' additional mutation, and fet the SysLem
relax again o a new stauonary state. Each mutation would JENCrate an
avalanche. We were never able t have the system organize itself o the eriteal
pownt. The resultwas always the same. The model would converge either to the
frozen phase or w0 the chaotic phasr:, and onl{v if the parameter € was tuned
very carctully would we get the inrercsting complex, critical behavior. There
was no selt-organized criticahity: Models that are made critical by tuning a pa-

rameter, although plenuful, aee of lictle interest in owir context.

IsLifea SelﬁOrganized Critical Phenomenon? 127

Despite Stu'’s early enthusiastic claims, for instance in his book The Ori-
gins of Order, that his evolucion models converge to the critical point, that they
exhibit self-organized criticality, they simply don’t. Nevertheless, his effort
was heroic and insightful. This was the first crude attempe to model a com-
plcte biology. |

'was in a quite frustrated state. On the one hand we had a picture of self-
organizcd crinicaliry char empirically seemed to fit observations of punctu-
ated equilibria and other phenomena. On the other hand, we were totally un-
able to implcmcn[ that idea 10 a suitable mathematical framework, dt_‘SPl[C
frantically working on the problem. In a collaboration with Henrik Flyv-

bjerg and Benny Lautru p. theoretical physicists at the Niels Bohre Insurtuce in
Denmark, we were even able to prove by riyorous macthemacics that the mod-
els could never self-organize to the critical point.

However,apart from the question asto what type of dynamics may lead to
acritical state, the idea of a poised state operating between a trozen and a dis-
ordered, chaotic state makesan appealing picture for evolution. A frozen state
cannot cvolve. A chaotic state cannot remember the past. This leaves the criti-
cal state as the only aleenative.

Unfortunately, contrary to Stuart’s general worldview and personaliry,
lite is not all happiness. In all of our work so far, we had selected a random
species for mutation tn order to start avalanches. It turned out thacall we hafd
to do was to choose the least fie species, which would have the smallest valley in
the landscape to jumip in order to improve its freness. After three years ofhard

work and lutle progress, pcrsistcnce ﬁnall)' Paid off



cbapter 8

mass extinetions
and punctuate&
equilibria 1n
a simple model

of evolution

Darwin's theory is a concise formulation of some general observations for the
evolution of life on earth. In contrast to the laws of physics, which are ex-
pressed as mathemarical equations relating to physical observable quanticies,
there are no Darwin's equations describing biological evolution in the lan-
guage of rigorous mathematics, as my colleague and friend Henrik Flyvbjerg
once eloquently pointed out. Therefore, it is a highly important marer to de-
termine if Darwin’s theory gives an essentially complete description of lifeon
earth, or if some other principles have to be included. Darwin’s theory con-
cerns evolution at the smallest scale, microevolution. We do not know the
consequences of his theory for evolution on the largest scale, macroevo-

lution, so it is difficult to confront, and possibly falsify, the theory by

observations on the fossil record.
Tcwas at che time of Darwin that Charles Lyell formulated

the philosophy of uniformirarianism, or gradualism. It was

Lyell's view that everything should be explainable in

terms of the processes that we observe around us.



130 How Nature Works

working at the same rate at all times. For instance, geological landscape for-
mations are supposed to be formed by smooth processes, and the full scale of
events, even those of the greatest extent and effect, must be explained as
smooth extrapolations from processes now operating, at thetr current observ-
able rates and intensities. In other words, the small scale behavior may be ex-
tended and smoothly accumulated to produce all scales of events. No new
principles need be established for the great and the lengrhy processes; all
causality resides in the smallness of the observable present, and all magni-
tudes may be explained by extrapolation.

Darwin accepred Lyell's uniformitarian vision in all ics uncompromising
intensity. Darwin believed chat his mechanism, random muration followed
by selection and proliferation of the ficter variants, would necessarily lead toa
smooth gradual evolution. Darwin wentso far as ro deny the existence of mass
extinctions. Since biology is driven by slow and small muzations operating at
all times and all places, how can the outcome be anything but smooth? Uni-
formitarianism underlies many views and opinions in Darwin’s The Origin of
Species, including his hostility to mass extinction. Darwin saw evolution as a
slow, gradual process. Darwin claims, “We see nothing of these slow changes
in progress until the hand of time has marked the long lapse of ages.” This ts
gradualism in a nucshell.

This view is often shared, without further ado, by many evolutionary bi-
ologists. Niles Eldridge, the copromoter of the phenomenon of punctuated
equitibria, be10ngs to that group and concludes that Darwin's theory (s in-
complete because, Eldridge believes, it cannot explain the catastrophic exrine-
ttons. Raup and Sepkoski hold similar views. The external cause could be a
change in weather pattern, a volcanic etuption, or an extraterrestrtal object
hitting the earch. Rccently, it has been suggested that cosmic neutrinos from
collapse of nearby supernovas, hitting the earth at regular intervals, are re-
sponsible. It seems to be a widespread assumption that some cataclysmic im-
pact must be responsible for mass extinction, so the debate has been about
which external force was responsible.

Toalarge degree, Lyell's uniformirarian view is a healthy one. Indeed the
microscopic mechanisms ace solely responsible for the behavior at all scales.
Nothing new has to be introduced at any scale.
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However, the uniformirarian theory fails to realize thata simple excrapo-
Jation does not necessarily take us from the smallest to the largest scale. A
Physicist might represent Lyell’s philosophy simply as a statement that we
live in a linear world. The assumption thart a large effect must come from a
large irmpact also represents a linear way of thinking. Honrever, we may be
dealing with highly nonlinear systems in which there is no simple way (orno
way at all) o predicc emergent behavior. We have already seen m. different
contexts that microscopic mechanisms working everywhere ina uniform way
lead to intermittent, and sometimes catastrophic, behavior. In self-organized
critical systems most of the changes often concentrate within the larges_t
events, so self-organized criticality can actually be thoughr of as the theoreti-
cal underpinning for catastrophism, the opposite philosophy to gradualisrri.

Thus, the science of genetics, which might be thought of as the atomic
theory of evolution, does not provide an answer to the question of the consc-
quences of Darwin's theory, precisely because we cannort extrapolate directly’
from the microscopic scale to the macroscopic scale. G. L. Simpson, in his fa-
mous book Zempo and Mode in Evolution states this observation very explicitly in
his introduction:

[Geneticists] may reveal what happens to a hundred rats in the course of
ten years under fixed and simple conditions, but notwhar happened tO.a.bll-
lion raes in che course of ten million years under che fluctuating conditions
ofearth history. Obviously, the latter problem is much more imporranc.

Stephen Jay Gould uses this argument to justify that only a hisiorical,
narrative approach ro studying evolution is possible, underlining the mxpor_-
tance of his own science, paleontology, which deals with the study of the fossil
record. Indeed, such studies are indispensable for providing insight into the

mechanisms for evolution on a grander scale.

QOur approach 15 1O explore. by suitable mathematical modeling, the con—
sequences of Darwin’s theory. Perhaps then we can judge if some oiher princi-
ples are needed. If the theory of self-organized criticality is applicable, then
the dynamics of avalanches represent the link between Darwin’s view o.F con-
tinuous evolution and the punctuations representing sudden quantitative
and qualitative changes. Sandpiles are driven by small changes but they

nevertheless exhibit large catastrophic events.
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The mathematical models that Stuart Kauffman and I had studied were
absurdly stmplifted models of evolution, and failed to caprure the essential
- behavior. There was no self-organized critical state and no punctuated equi-
librium. It curns out that the successful strategy was to make an even simpler
model, racher than one that is more complicared. Insight seldom arises from
complicated messy modeling, but more often from gross oversimplifica-
tions. Once the essential mechanism has been idendified, it is easy to check
for robustness by tagging on more and more details. It is usually easy tostart
at the simple and proceed to the complicated by adding more and more in-
gredients. On the other hand, it is an art to scarr at the complicared and
messy and proceed to the simple and beautiful. The goal is not the reduc-
tionist onte of identifying the “correct” underlying equations for evolution in
all its details, bur to set up some simple equations with the goal of illuserat-

ing robust processes. simplifications

Can We Model Darwin?

In the beginning of 1993 I had more or less accepted the failure of my frantic
atrempts to make Kauffman'’s NKC model and many other related models
organize themselves to the critical state. Many trips to Santa Fe and numer-
ous discussions had fatled to lead to much progress.

This unhappy state of affairs changed suddenly when Kim Sneppen, a
graduate student from the Niels Bohr Institurte, came to visit us at Brook-
haven for a week. Kim had started his carcer in nuclear physics, and had writ-
ten scientific papers on fragmentation processes in heavy ion collisions. The
Niels Bohr Institute has a glorious past in nuclear physics, sparked by Bohr'’s
interest in the field. Bohr received his Nobel Prize for his quantum mechani-
cal theory of the atom. Thac did not stop him from venturing into nuclear
physics when that field opened up. However, many scientists at the Niels
Bohr Institute have failed to realize that nuclear physics is not at the forefronc
of science any more, and not having Bohr's enthusiasm for new opportunities,
they are stuck, living in a dream of past glory. Some of these older scientists
even tmutate Bohr's mannerism, such as his way of smoking a pipe. This has

stifled the careers of two generationsof physicists in Denmack who have seen

Mass Extinctions and Punctuated EquiliBria ina’Model 133

the new horizons and are notcontent to live in the past. Thisis not sounustal:
science is often driven by sheer inertia. Science progrésses “death by dedth”A

few young physicists have survived on temporary grants from Carlsber gand

NOVO, wo industrial giants in Denmark with vision and the willingness

and ability to help out.

Kim had constructed a simple mathematical model for interfaces mov-
ing in a random medium. While superﬁcially this might not scem more ex-
it
coffee being absorbed by a paper napkin. The boundary berween the wet
paper and the dry paper forms an interface. The paper has some “pinning”
sites where it is difficult for the interface to pass, as for instance narrow pores
in the napkin (Figure 29). In his model, growth takes place ateach time step

at the site with the smallest value of the pinning force. The interface shifts up-

ing than nuclear physics, at least it is different. Think, for instance, of

ward by one length unit and is assigned a new random pinning force. This
type of dynamics, where activity occurs at the place with the smallest or the
largest value of some force, is called “extremal dynarmcs." ‘Becouse ofthe elas-
ticity of the interface, the growth atone site reduces the pinning force on t.he
neighbor sites, making them likely candidates for growth at the nexr in-

stance. Kim showed that the surface organizes itself to a critical state, with

X

Figure 29. Schematic picture of an avalanche separating two interface
configurations in the Sneppen model. The size s of the avalanche, or

punctuation. corresponds to the shaded area.
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avalanches of all sizes. In other words, interface growth is a self-organized
critical phenomenon. Similar ideas were developed earlier by Sergei Zaitsey
at the Institute for Solid State Physics at the Chernogolovka research center
near Moscow in a different context.

Kim gave a seminar at our physics department to a small audience of ten
to fifteen scientists. He is nota polished communtcator. His approach isspon-
taneous and intuitive, not based on detailed plann{ng. His talk was like a dia-
logue with the audience with lots of questions back and forth. He is totally
uninterested in his personal appearance, at least when he gets deeply involved
in science. But his message came through.

I gave a brief spontaneous presentation on the evolution story at the
blackboard in my office. In addition to Kim Sneppen, some of my cowork-
ers at Brookhaven were jammed into the small office. Albert Libchaber, an-
other visitor, famous for his work on chaos, was present. He had experi-
menaally verified Feigenbaum’s theory of the onset of chaos through
period doubling bifurcations in a turbulent system. He shared wich
Feigenbaum cthe Wolf Prize, second only to the Nobel Prize in prestige,
for that work.

“This is not a success story,” I started, expressing my frustration. Then
related the story of the sandpi[es, discussed Kauffman, Gould, and punctu-
ated equilibrium, and ended with our futile studies of Kauffman's NKC
models of rubber landscapes. There were a lot of comments from everyone. “1
think that we can combine this with my way of thinking,” Kim exclaimed at
the end of the presentation.

The next day, awarm and nice spring Saturday, Kim and I went sightsee-
ing on Long Island. We spent some time at a local fair that we happened to
pass by; we saw a spectacular magic show and other exhibits. Then we went to
Fire Island, a narrow island with miles and miles of beaches running parallel
to Long Island along the south shore. On and off, we would discuss the evolu-
tion problem in a joking and playful way.

[ don’t know why it is, but it appears to me thar this is the only way of
doing 1maginative science. T he harder one tries, the less likcly the pros pect of
success. I certainly never came up with any ideas by sitring intensely in my
office staring at a sheet of blank paper.
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A Science Pr'o;‘e'ét_
fora Sunclay Afternoon

On Sunday afternoon we went to work. Extremal turned out to be the magic
word. Kim's mode! worked because the site with the “least” pinning force
was selected for action. In fact, in the continuous deterministic sandpile
models, which describe a bowl of sugar that is gradually tilted, avalanches
starrat the point with the largestslope. In earthquakes, the rupture starts at
the location where the force fiest exceeds the threshold for breakage. Maybe
extremal dynamics is the universal key to self-organized criticality. Could
the principle be applied to models of evolution and thereby produce punc-
tuated equilibria?

In the computer simulations that Stuart Kauffman and I had done, new
coevolutionary avalanches were initiated by making a random mutation ofa
random species, thar 13 by changing an arbitrary 1 toaoor ViCE Versa some-
where in the NKC model. Kim and I decided to choose the species positioned
at the lowest foothill in the Sewall Wright's fitness landscape for elimination,
and replace it with a new species. Didn’t Darwin invoke survival of the fittest,
or, equivalently, elimination of the least he?

One mighe think of this fundamental step either asa mutation ofthe least
fic species, or the substitution of the species with another species in its ecolog-
ical niche, which is defined by its coupling to the other species with which it
interacts, Such an eventis called a pseudo-extincrion event. Thisisin line with
Gould's picture of speciation: it rakes place because of the “differential success
of essentially stactic raxa.” It is a matter of definition as to how many steps are
needed to conclude that a species has become extinct and a new one has
emerged, e, whena real extinction event has taken place. According to Sep-
koski, “A species is what a repu table taxonomist defines as such.” In our
mode!, the number of species 1s conserved. Only the ficter of the original
species and its mutated version is conserved. ‘

The basic idea is that the species with the lowest fitness is the most likely
to disappear or mutate at the next time step- These species (by definiton)are
most sensitive to random fluctuations of the climate and other external forces.

Also, by inspection of the fitness landscape, 1t 15 obvipus that in general the
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species sitting at the lowest fitness peak has the smallest valley to overcome in
order to jump to a ficter peak. That is, the smallest number of coordinated
mutations are needed to move to a better state. In face, laboré.tory experiments
on colonies of bacteria show that bacteria start mucating at a faster rate when
their environment changes for the worse, for instance when theic diet changgs
from sugar o starch.

However, we firscwanted a simpler representation of the fitness landscapes

than Stuart’s cumbersome NKC landscapes. In the NKC models, a specific
finess was assigned to each combination of t’sand o's in the genetic code. Fora
species with a twenry-bit code, tnteracting with four other species, we would
have to store 2 to the 24th power random numbers, that is more than ten mil-
lion numbers for each species. If there are 1,000 species, we would have a total of
more than 1o billion numbers. In our model, we would not keep track of the
underlying genetic code, but represent each species by a single fitness value

and update that value with every muration of the species. We don't know the
explicit connection between the configuration of che genetic code and the
fitness anyhow, so why not represent the fitness with a random number, chosen
every ume there is a murtation? We then had o keep track of only 1,000 firness
values. If someone has the patience and computer power it ought to be possible
to go back to an explicit representation of the fitness landscape.

Kim started to convert our ideas into computer [anguage on my com-
puter, an IBM workstation. We chose the species to be situated on the rim of a
large circle. Each species is interacting with its two neighbors on the circle.
This could represent something like a food chain, where each species has a
predator on its leftand a prey on its right. In principle, it could also have a
symbiotic relationship with either. In the beginning of the simulation, we as-
signed a random number between o and 1 toeach species. This number repre-
sents the overall fitness of the species, which can be thoughr of as positioned
on a fitness peak with that random value of fitness. Then, the spectes with the
lowest fitness was eliminated and replaced by another species. What would
the firness of the new species be? We tried several possibilities that worked
equally well. The fitness of the new species after a mutation is unlikely to be
much improved. One would not expecta jump from a very low peak to a very
high peak. Thus, first we replaced the least fic species with a species with a
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fitness between o percent 1o percent higher than the original one. We also
cried a version in which the new fitness is restricted to be between tts old value
and 1. However, for mathematical simplicity we finally tried to use a spectes
with 2 completely random fitness. That means we assigned a new random
aumber between o and 1 ro that site. Of course, this does not represent real
life. The important point is that the outcome of the simulation was robust
with respect to these variations, so with a little bit of luck it might be broad
enough to include real evolution.

The crucial step that drives evolution is the adapration of the individual
species to its present environment through murtation and selection of a frcter
variant. Other interacting species form part of the environment. We could in
Principle have chosen © model evolution on a less coarse-grained scale by
considering murations at the individual level rather than on the level of
species, but that would make the compurations prohibitively difhicult.

The idea that adapracion ac the individual (or the species) level, is the
source of complexiry 1s not new. Zipf’s observation that organization stems
from the individuals’ pursuit to “minimize their efforts” can be put in that
category. In his book Hidden Order, John Holland, a computer sciencist at the
Santa Fe Institute and the University of Michigan, also locates the source of
complexiry to the adaptation of individuals. His observation is correct, but
perhapsnot partiCularly deep. Where else could complexiry come from? Hol-
land is best known for inventing “genetic algorithms” for problem solving, In
these algorithms, the possible solucions to a given Problem are represented by
a generic string of 1's and o's, and the solutions evolve by random mutations
and selection of the most fit variants, which is the variant that best solves the
problem. The crucial issue is, again, how to go from the microscopic individ-
ual level to the higher level of many individuals where complexity occurs. We
shall see that this happens because myriad successive individual adaptaton
events evencually drive the system ofindividuals into a global critical state.

How should we represent the interactions with other species? The reason
for placing the specieson a circle was to have a convenient way of representing
who is interacting with whom. A given species would interact with its o
neighbors, one to the left and one to the right. Ifthe species thatchanges s the

frog, the two neighbors could be che fly and the stork. We wanted to simulate
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the process by which the neighbors are pushed down from their peak and ad-
just by climbing the nearest peak available in the new landscape. One possi-
biliry was to choose the resulting ficness as some fixed amount, say 5o percent
lower chan the original peak. We tried thisand many differentalgorithms for
choosing the new fitness of the neighbor, The programs were so simple that
the programming for each version would take no more than ten minutes, and
the computer run would take only a few seconds to arrive at some rough re-
sults. Again, the interactions could be chosen arbitrarily, which iscrucial since
without this type of robustness the mode! could not possibly have anything to
dowith real evolution. We settled on a version where the fitnesses of the neigh-
bors would simply change to new random numbers between o and 1.

In summary, the model was probably simpler than any model ctharc any-
body had ever written for anything: Random numbers are arranged in a circle. At each
time step, the lowest number; and the numbers at its two neighbors, are each replaced by new
random mumbers. That's all! This step is repeated again and again. What could
be simpler than replacing some random numbers with some other random
numbers? Who says that complexity cannot be simple? This simple scheme
leads to rich behavior beyond what we could imagine. The complexity of its
behavior sharply contrasts with its stmple definicion.

In a bustness context, the process would correspond to a manager ﬂring
the least efficient worker and his two coworkers, and then replacing them
with three new guys coming in from the street. The abilicies chat the two
coworkers had learned by working with their poor performing colleague
would be useless. Of course, the manager’s rule is not fair, but neicher are the
laws of nature.

At the start of the computer simulation, the fitnesses on average grow
since the least fit species are always being eliminared. Figuce 30 shows the
fitness of the least fic species versus time, Although chere are fluctuations up
and down, there 1sa general tendency of the average fitness to increase. Even-
tually, the fitnesses do not grow any further on average. All spectes have
fitnesses above some threshold. The threshold appears to be very close to 2 /3
No species with fitness higher than this threshold will ever be selected for
SPONTaneous muration; they will never have the lowest fieness. However, their

fate may change if their weak neighbors mutare.
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Figure 30. Fitnessof least fit species vs. the number sof up&ate steps n
a small evolution model with twenty species. The envelope function,
élefinlng the fitness gap, increases 1n a stepwise manner. An avalanche
starts when there 15 a step, and ends at the next sted, where a new
avalanche starts. The envelope function eventually reaches the eritical

value fc (Pac'z.usl(i et al.. 1995)

Let us consider a pointin time when all species are over the chreshold. At
the next step the least fic species, which would be right at that threshold,
would be selected, starting an “walanche,” or “cascade,” or “punctuation" of
mutation (or extinction) events that would be causally connected with this
triggering event. There is a domino effect in the ecology. After a while, the
avalanche would stop, when all the spectes are in the state of “stasis” where all
the firnesses again will be over that chreshold.

Figure 31 shows a snapshor of all the finesses of all the species in the
midst of an avalanche in an ecology consisting of 300 species. Note that most

species are above the threshold but there is a localized burst of very active
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Flgure 3]. Snapsl'lot of the fitnesses in the stationary critical state in
t?le evolution model. Exeept for a localized region where there 1s a rela-
twely small fitnesses due toa propagat;ng coevolutionary avalanche, all

the fitnesses in the system have fitnesses above the self-organized thresh-
old = 0.6670 (Paczuski et al., 1995).

species with fitnesses below the threshold. Those species will be selected for
mutation again and again, as the avalanche moves back and focth in the ecol-
ogy. The species with high fitnesses are having a happy life, until the avalanche
comes nearby, and destroys their pleasant existence. In some sense, nature is
experimenting with all kinds of murtations, until it arrives at a stable com plex
network of interacu'ng species, where everybody is stable, wich fitnesses above
the threshold. One can think of chis as a learning process in which nature cre-
ates a necwork of funccionally integrated spectes, by self-organization rather
than by design. The “blind watchmaker” is at work. The Cambrian explosion
soo million years ago, and the Permian exrinction 250 million years ago in

which 96% ofall species became extinet, were the biggest avalanches that have
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occurred so far. At the Cambrian explosion, beautifully described in Scephen
Jay Gould's book Wonderful Life, nature experimented with many different de-
signs, most of which were discarded soon after, but out of che Cambrian ex-
Plosion came a sustainable network of species.

We observed a similar behavior in the Game of Life. An avalanche of un-
scable, low-fit individuals with short life spans propagates until che seemingly
accidental emergence of a stable network of organisms.

We monitored the duration of the avalanche, that is the total number of
muration events in each avalanche, and made a histogram of how many
avalanches of each size were observed. We found the all-important power law.
There were indeed avalanches of all sizes, N(s) = s™7, with T being approxi-
mately equal to 1. Small avalanches and large avalanches are caused by the
same mechanism. It does not make sense to distinguish between background
extincrions happening all the time, and major ecological catastrophes.

That afternoon, we simulaced five or six versions of the model, and the re-
sult was always the same, with the same value of the exponent 7. In thac sense,
our result appeared to be universal. The system had self-organized to the crit-
ical state.

For a change, we left the lab with a great sense of accomplishment that
evening. It was no longer a fundamental mystery to us how an interacting
ecology could evolve to a “puncruated equilibrium” state with ecological
catastrophes of all sizes. Of course one might want to put some more meat
on the skeleton of the model that we had constructed, but we were confident
that the fundamental conclusion would survive. Darwin’s mechanism of se-
lecting the fitter variant in an ecology of species leads not to a gradually
changing ecology but to an ecology in which changes take place in terms of
coevolutionary avalanches, or punctuations. QOur numerical simulations had
demonstrated that there is no contradiction between Darwin’s theory and
punctuated equilibria. Qur medel is in the spirit of Darwin’s theory, but nev-
ertheless exhibits punctuated equilibria.

The effort that afternoon is an example of a working model with interac-
tions between man and machine that could not have taken placeevena decade
ago. The efficiency and availability of small computers have reached the point

where one can obtain answers as soon as one can think up simple models. A
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few years ago, a project like this would have taken weeks, punching cards and
waiting for output at a central computer, rather than the afternoon the proj-
ect actually consumed. It would have been utterly impossible for R. A. Fisher
and his contemporaries to do something similar in the 1930s.

Let us briefly return to what went wrong in our previous attempts to
model puncruated equilibria. Firstofall, the idea that the critical point repre-
sents a particularly “fit” or good state was misguided. When we see ourselves
and other species as “fit” thismeans chatwe are ina period of stasis in which we
form a stable, integrared partofacom plexecological network. Lericbe coop-
eration or competition. The key point is that the network is self-consistent,
just like Conway's creatures in the Game of Life.

We are “fir” only as long as the network exists in its current form. We tend
to see fitness as something absolute, Iierhaps because we view the present pe-
riod of stasis as pérmanent, with a prcferential status. However, when che
period of stasis is over, it 1s a new ball game and our high fitness mighe be de-
stroyed. Actually, in a greater perspective, our present period might noteven
be 2 major period of stasis, but a part of an avalanche. Life is unstable and
volatile. Dead, inert marerial is stable and in chis sense fic. Ironically. evolution
cannot be scen as a drive toward more and more fur species, despirte the fact
thac each of the steps that constitutes evolution may tmprove the fitness.

What one species (humans) may see as its superior fitness may berter be
characterized as a selt-consistent integration into a complex system. Seen in
isolacion, the emergence of organisms as complicated asus isa complete mys-
tery. Biology constructed the solution to the fitness problem together with the
problem itself by a process of self-organization involving billions of species.
It is a much simpler task to construct a complicated crossword puzzle by a
coevolutionary process than to solve it by trial and error for each word in iso-
lation. Evolution is a collective Red Queen phenomenon where we all keep
running without getting anywhere.

Our simple model barely constitutes a skeleton on which to construct a
theory of macroevolution. It is not the last word on the matter; probably it is
the ficst. Irisasim ple toy mode! that demonstrates how, in principle, com plex-
ity in an tnteracting biology can arise. It is the beginning of a new way of think-

tng, not the end. It ignores an embarrassing range of real phenomena in evolu-
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gion. There is no process by which the number of species can chang«i‘. Why am
there species in the first place? Also, the fitness landscape is introduced ad hoc.
In a more realistic theory, the landscape itself should be self-organized in the
evolutionary process. However, we believe that our model is a useful starting
point for these considerations. Indeed, there has been a flood of activity; scien-
tists have augmented our model to make it more complete. Vandevalle and
Ausloos of Liege, Belgium, have included speciation. The mutating species
gives rise to two or three new species, each with its own fitness, which enter the
ecology in competition with all the other species. Vandevalle and Ausloos start
their simulation with a single species. This results in phylogenetic tree struc-
tures, with a hierarchical organization similar to the taxonomic classtfication
of species into phyla, genera, and families. The model still selforganizes to the
critical state. The exponents of the power law are different from ours.

Why is it that the conceptof punctuated equilibrium is so important for
our understanding of nature? Maybe the phenomenon illustrates beteer than
anything else the cricicality of a complex system. Systems with punctuated
equilibria combine features of frozen, ordered systems, with those of chaotic,
disordered syseems. Systems can remember the past because of the long peri-
ods of stasis allowing them to preserve what they have learned through his-
tory, mimicking the behavior of frozen systems; they can evolve because of the

intermittent bursts of accivity.

Lifeata Cold Place

In real life there is no Grim Reaper looking for the leascstable species, asking
it to put up (mutate ) or shut up (go extincr). Things must happen in parallel
everywhere. A real-time scale for the murations has to be introduced. Species
with low fitness, at the low peaks in the ficness landscape, have a short time
scale for jumping to better maxima; species with high ficness are less inclined
to mutate because a farger valley has to be traversed to find a more fit peak.
The barrier that has to be traversed can be thought of as the number ofco-
ordinated mutations of the DNA that have to occur to take the species from
one maximum to a better one. The number of random mutations that have to

be tried out increases exponentially with this barrier. Thus, the time scale for
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crossing the barrier is roughly exponential in the fitness. One can think of the
probability of a single mutarion as given by an effective temperature I’ For
high temperatures, there is a high mutation rate evcrywhere, and the dynam-
Ics are very different from the punctuated equilibrium behavior discussed
here. There cannot be large periods of stasis in systems that are disturbed ata
high rate. If the sandpile is shaken vigorously all the time it cannot evolve to
the complex, critical state. It will be fat instead. For low temperatures, or for
low muration activity, the dynamics studied here are recovered without ex-
plicicly searching for the species with the lowest firness.

We arrive at the conclusion that complex life can oaly emerge at a cold
place in the universe, with lictle chemical activity—nota hot sizzling primor-

dial soup with a lotof acciviry.

Comparison with Real-Data

To arrive ac an overview of evolution in the model, one can make a space time
plotof the evolutionary activity (Figure 32). The x axis is the species axis, and
the y axis is time. The plot starts at an arbitrary time after the self-organized
critical state has been reached. A black dotindicates a time thaca given species
undergoes a mutation. The resulting graph is a fractal. Starting from a single
muctating species, the number R of species that will in average be affected after
alarge number Sofupdates willbea powet taw, S = R? where the exponent D
is called che “fractal dimension” of the graph.

To moniror the fate of individual species, lecus focus on a single species, for
instance the one situated on the origin of the species axis, as we move along the
vertical time direction. Obviously, there are long periods with no black dots
when notmuch is goingon. These are the periods of stass. Also, there are some
points in time when there is a lot of activity. Let us count the number of muta-
tion events as we move along the time direction. Figure 33 shows the accumu-
tated number of mutations of the selected species as a function of the time. One
can think of this nurber as representing the amount of physical change, such
as the size of a horse, versus time. The “punctuaced equilibrium” nature of the
curve isobvious. There are long periods of stasis where there is no ac Lvity, sep-

arated by bursts of actvity. Such a curve is called a Devil's staircase because of
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Flgure 32. Activity pattern for the evolution model. For each species.
the points in time where 1t undergoes a mutation 1s shown as a black dot.
Time 15 measured as the number of update steps. The patternisa fractal

in time and space (Maslov etal., 1994)
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Egure 33. Punctuated equilibria in the evolution model. The curve
shows the number of mutation events for a single species. that 1s the num-
ber of black spots encountered when moving along the vertical direction

throug}l the fractal shown in Egure 32.

its many steps, some very large, but most very small. Berween any two steps,
there are infinitely more steps. The Devil's staircase was invented by the Ger-
man mathemaucian Georg Cantor (1845-1918) in the nineteenth century,
and for a long time it was thought that no physical system could possibly show
such intricate behavior. '

One can measure the distribution of the durations of the periods of stasis,
or the return times between murtations. There are no real jumps in the curve,
only periods with a large number of very rapid small increases. In the fossil
record, one might not be able to resolve these small, rapid increases, so the re-

sulting variation appears as a jump, or saltation. For comparison, Figure 34
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Egure 34. Punectuated equilibrium in nature. Thoracie width of the
radiolarian Pseudocubus vema as 1t has inereased throug}l 1ts evolution-

ary history (Kellogg. 1 975).

shows how the thoracic width of the radiolarian Pseudocubus vermna has evolved
during the last five million years. This curve has a quite similar structure to
the one in Figure 33. Note that there are no large jumps in the curve. The
punctuations are simply periods where there is a large amount of evolution-
ary activity. The evolution of the size of the horse follows a similar patrern.

In our crude model, the single step can be thoughr of as representing
either an extinction event, in which the niche of the species that became ex-
tinct is filled by another species, or a pseudo-extinction event, in which a

Spec {es mutates into a ditferentspecies. In eicher case, che original species does
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not exist after the evenr. In real evolution the same question may arise. Species
may become extinct, or they may mutate through several steps into sornething
quite different. The statistical properties of avalanches in our model should
be similar to the statistical properties of extinction events in biological history.
Therefore, it makes sense to compare the results of simulations with the
record of extinction events in the fossil record.

By running the computer long enough, we can accumulate enough
dara to make the statistics of our model very accurate. In one run, we
made more than 400,000,000,000 pseudo-extinctions. That is more than
eighty mutations for each person in the world. We can also make several
runs on the computer, whereas there is only one evolution of history on
earth. Itis impossible for even very meticulous paleontologists like John
Sepkoski o compete with this, making it difficulr to compare our pre-
dictions with reality. Sepkoski looked at “only” 19,000 real extinctions of
species.

' To make com parisons with data, Kim Sneppen, Hearik Flyvbjerg,
Mogens Jensen, and 1 have simulated the evolution model in real time units as
discussed above. We sampled the rate of extinctions (or pseudo—exisceﬁce)
taking place in temporal windows of a few hundred time steps, to be com-
pared with Sepkoski'sbinning of data in intervals of four million years. In this
way we were able to generate a synthetic record of extinctions {Figure 35).
Note the similarity wich Sepkoski’s data (Figure 4,).

Raup’s histogram of Sepkoski's data in Figure 5 can be reasonably well
ficted to a power law with exponent between 1 and 3. Figure 36 shows, for
comparison, the distribution of extinction events from the model. The im-
portant point is that the histogram is a smooth curve with no off-scale
peaks for large extinction events. [t would certainly be nice to have a finer
resolution on the data, with extinctions measured, say, every one million
yeats.

Sepkoski also noted that extinctions within individual families were cor-
related wich extinctions in other families across the various taxa. One may say
that the evolutions of different species “march to the same dcummer.” This is

exacrly whar o expect from our simulation, in which extinction events, in-
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Figure 35. Synthetic record of extinetion events from the punctuated
equilibrium model. Note the similarity with Sep](os‘zu s curve for real
evolution (Figure 4).

cluding mass extinctions, can be thought of as the radiadon of aclaptive
changes of individual species.

Figure 37 shows the accumulated mutations of a single spectes, the
Devil's staiccase, together with a plot of the global activiey of extinctions. A
real time scale in which the murattons rate was represented by a low tempera-
ture was used. The individual species change during periods when there s a
large general acrivity, as obsecved by Sepkoski, although not all avalanches
affect the species thac we are monitoring. No outside “drummer” is necessary,
however. The synchronized extinctions are a consequence of the criticality of
the global ecology, linking the fates of the various spectes together, like the

sand grains of the sandpile model.
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Fxgure 36. Distribut;on of events in the evolution model. Compare
wit.h R-aup‘s plot (Figure 5) The events can be tl-loug}lt of better as
ext1nct10ns. or pseudo-extinctions where a species disappears by mutating
into another species.

Although large events occur with a well-defined frequency, they are not
periodic, neither in real evolution nor in our simulation. For real evolution,
this has been pointed out repeatedly, most recently by Benton in his book The
Fossif Record. The actual statistical properties of the extinction record supports

the view that biological evolution isa self-organized critical phenomenon.
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Figure 37 Global vs. local act;vity in the evolution model. The global
extinetion rate 1s indicated b_y the gray histogram. The curve shows

the evolution of a singie. ram‘lomly chosen species. The bursts of rapi&
activity take place cluring periods of large extinetion activit‘y. Eveolution
of different species “march to the same drummer.” This was noted l)y

John Sepkoski for real evolution (Sneppen etal., 1995).

On Dinosaurs and Meteors

Implicit in all proposed causes of mass extinction so far, including the theory
involving an asteroid impact, isa presumed equality between cause and effect.
According to this philosophy, mass extinction must be caused by a cataclysmuc
external event, and the only way to understand the extinction event is to iden-
tify that event. Alvarez’ theory of a meteorite hitting the earth sixty million
years ago, and thereby causing the extincions of dinosaurs is widely accepted.
Alvarez even suggested that the meteorite was one falling ar his own doorstep,
near the Yucatan peninsula in Mexico. The remnants of a large crater and a

layer of iridium spreading worldwide at about the same time are 1aken as
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evidence of the theory. One reason may be that no “alternative” theory has
emerged, in the sense that no other cataclysmic impact has been suggested.

The impact theory has been accepted despite two major shortcomings.
First, the dinosaurs appear to have died out at least a couple of million of years
before the meteorite hit. Acche very least, the dominance of the dinosaurs was
already greatly reduced ac that ime. It defies logic to claim chat a meteor hit-
ting when the dinosaurs were on the way out was responsible for their demise,
There would be no obvious need for the meteor. The real question would be
why the dinosaurs were going downhill in the ficst place. Second, no causal re-
lationship berween the meteor and the resulring extinction has been estab-
lished. Whatacru ally killed the dinosaurs? All we have are loose, unsubstani-
ated, speculations about climate changes caused by the meteor. And why were
the dinosaurs affected and not certain other specieﬁ?

The fact that extinctions are synchronized is taken as further evidence, in
particular by Niles Eldridge, of an external force working across families. In-
deed, in an equilibrium linear world there would be no other possibility. A
massive extinction event requires a massive external impact. This s not che
case in our self-organized critical world.

Our caleulation demonstrares that it is ac least conceivable that the inter-
mittent behavior of evolution, with largc mass extincrions, can be due o che
internal dynamics of biology. In his book Extinction: Bad Luck or Bad Genes?
Raup argues that extinction is caused by bad luck due to external effects,
rather than by intrinsically bad genes. We argue thateven in the absence of ex-
ternal events, good genes during periods of stasis are no guarantee of survival.
Extinctions may take place also due to bad luck from freak evolutionary
events endogenous to the ecology. This cannot rule out thar extinction events
were directly caused by some external object hitring the earth, Of course, in
the greater picture, nothing is external so in the final analysis catastrophes
must be explainable endogenously in any cosmological model.

However, the fact chat the histogram of extinction events is a smooth curve
indicates that the same mechanism is responsible for small and large extinction
events, because otherwise the size and Frequency of these large events would have
no correfations with the smaller extinction evenrs. Certain ly the extinctions tak-

ing place all the time have nothing o do with extraterrestrial impaccs.
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In facc it is quite simple and natural to reconcile the two viewpoints. In
our model the avalanches were initiated by events that we thoughr of as mutra-
tions of a single species. One might also think of the initiating event as having
an external cause. Think of the sandpile model in which the avalanches are
initiated by dumping a grain of sand from the outside. Within this lacter in-
terpretation, the meteor hitting the earth merely representsa triggering event,
which initially would affect only a single or a few species. Maybe it destroyed
some vegetation because of lack of sunshine. The demise of these species would
destroy the livelihood of other species, and soon. The resultng massextinction
would be a domino process “caused” by this initial event. The mass exunceion
could only take place because the stage had been set by the previous evolu-
tionary history, preparing the global ecology in the critical state. Inacoupleof
recent articles, Newmann has extended our model to include the effect of ex-
ternal perturbations as sketched here. They still find self-organized criticality
(SOC) with a power law distribution of avalanches, although their value of
the exponent, T = 2, 1s different from ours and poss{bly tn better agreement

with Raup's and Sepkoski’s observations.

Dante Chialvo's Evolutionary Game

Dante Chialvo is a colortul Argentine, originally trained as a medical docror,
now living in the United Scates. He has given up his original career and per-
forms research, mostly theorenical, on brain modeling and evolution. Icameto
know him at a conference on self-organized criticality, stochastic resonance,
and brain modeling that he organized in 1990, 1n Syracuse, New York. [cwas
not clear at all at that point what SOC has to do with brain modeling. I guess
that the conference was organized in an attempt to connect medical brain re-
search with current ideas in dynamic systems. After all, the brain is a large dy-
namic system with myriad connected neurons—we shall return to this later.
That meeting brought me into contact with a group of scientists looking
for general mechanisms for the organization ofliving organisms, covering an
enormous spectrum of thoughts. The signal-to-noise ratio of the ralks and the
discussions was rather low, but at least here was a group of open-minded peo-

ple realizing a need for new ideas.
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From Syracuse, Dante moved to the Santa Fe Institute for a couple of
years, and then on to the University of Arizona to take a teaching position.
Having heard about our evolution mode! at various conferences and at bar
conversations, Dante came up with hisown pedagogical version.

Dante arranged his twenty students in acircle and gave them twenty-sided
dice. The students represented the species, and the number on his die is his
ficness. Qur random number generaror is replaced by a throw of the dice. At
each step the student with the lowest number, that is the species with the least
fieness is selected. He throws his die, and so do his two neighbors. The new ran-
dom numbers represents their new fitnesses. In case two guys share the lowest
number, the one to go extinct would be decided by a roll of a tie-breaker die.
The student who now would hold the lowest number is then selected for ex-
tinction and so on. A twenty-first student would do the bookkeeping at the
blackboard. He would monitor and plot the running smallest number of all
the dice. That would trace outa curve looking like Figure 3o0.

After several rolls, most of the students would be looking at numbers ex-
ceeding a critical fitness threshold of 13, that is near the fraction 0.667 found
in our model, The bookkeeper then starts measuring the avalanche distribu-
tion. An avalanche starts when the lowest number among all the studencs
exceeds 13, and it scops when the lowest number exceeds 1 3 again. The whole
dynamics can be followed in detail. Because of the small number of students
and their limited pattence, the resulting SCATISLICS are lousy compared with
what can be obtained from the high-speed digital com puter. Punctuated
equilibrium behavior can be detected by plotting the accumulated activiry of
a single, selected student. If we count how many tmes he has thrown his die
up to a time £, the resulting curve will look somewhat like Frgure ;3. For long
periods of time, the periods of stasis, he does not throw the die at all, while
other students are busy, but this inactivity 15 interruptt:d by relatively short

periods where he and his neighbors get busy.

Self—Organized Criticality and Gaia

In a seminal work, Jim Lovelock, an English scientist, came up with the fasci-

nating idea that al! life on earth can be viewed as a single organism. This idea
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has struck many scientists as preposterous since it Hies in the face of the usual
reductionist approach and smacks of New-Age philosophy. Lovelock’s idea
is that the environment, including the air that we breathe, should not be
viewed as an external effect independent of biology, but that it is endogenous
to biology. The oxygen represents one way for species to interact. Lovelock
noted that the composition of oxygen has increased dramaucally since life
originated, The oxygen content is far out of equilibrium. The layer of ozone,
an oxygen molecule, that protects life on earth did not just happen to be there,
but was formed by the oxygen created by life itself. Therefore, it does not make
sense to view the environment, exemplifted by the amount of oxygen, as sepa-
rate from biological life. One should think of the earth as one single system.

Whar does it mean to say that the earth is one living organism? One
might ask in general: What does it mean that anything, such as a human, is
one organism? An organism may be defined asa collection of cells or other en-
cties thatare cou pled to each other, so thac they may exist, and cease to exist, at
the same time—that is, they share one another’s fate. The definition of what
represents an organism depends on the time scale that we set. In a time scale of
too million years, all humans representone organism. Atshort time scales, an
ant’s nest is an organism. There is no fundamental difference between geneti-
cally identical ants carrying material back and forch to build and operate
their nest, and genetically identical human cells organizing themselves in
structures and sending blood around in the system (o build and operate a
human body.

Thusa single organism is a structure in which the various parts are inter-
connected, or “functionally integrated” so that the failure of one part may
cause the rest of the structure to die, too. The sandpile is an organism because
sand grains toppling anywhere may cause toppling of grains anywhere in the
pile.

One mighe thiak of selforganized criticaliry as the general, underlying
theory for the Gaia hypothesis. In the critical state the collection of species
representsasingle coherent organism following its own evolutionary dynam-
ics. A single triggering event can cause an arbitrarily large fraction of the eco-
logical neework to collapse, and eventually be replaced by a new scable ecolog-

ical network. This would be a2 "mutated” global organism. At the critical
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poincall species influence each other. In this state they acc collectively as asin-
gle meta-organism, many sharing the same fate. This is highlighted by the
very existence of large-scale extinctions. A meteorite might have directly im-
pacted a small part of the organism, but a large fraction of the organism even-
tually died as a resule.

Within the SOC picture, the entire ecology has evolved into the critical
state. It makes no sense to view the evolution of individual species indepen-
dendy. Atmospheric oxygen might be thought ot as the bloodstream connect-
ing the various parts of our Gaia organism, but one can envision organisms
that interact in differenc ways.

The vigorous opposition to the Gaia hyporhesis, which represents a gen-
uine holistic view of life, represents the frustration of a science seeking to

maintain irs reductionist view of biological evolution.

Replaying the ’Eipe of Evolution

In real life we cannot “rewind the tape of evolution,” but in our simple model
we can! History and biological evolution are massively contingent on spuri-
ous incidents. The question of what ifthis or thatdid nothappen has been the
source of endless speculations by historians, and has constituted material for
numerous books and movies. What if Lee Harvey Oswald had missed John E
Kennedy in Dallas? Would world history have changed? What if Columbus
had been forced to return, or hit a hurricane on his dangerous journey into
the unknown? In the movie Back to the Future, McFly returns to the past and
changes a few minor details, thus repairing some bad features of his present
life. In the current television show “Gliders," a group oftravelers visit the earth
in various parallel universes. In one episode one has to stop for green light in-
stead of red; in another the Russians won the Cold War and transformed
Alaska into Gulag Archipelagos. In real life, we never know what would have
happened. We cannot extrapolate from our present situation into the future
(or from the past into the present). Where will the stock market be in a year
from now? Or tomorrow?

One could argue thatitisactually the sensitiviry of real life to minor spu-

rious evencs that makes fiction possible, or believable. One could not think of
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literature, apart from the most boring, describing life in a noncritical universe
where everything 1s ordered and predictable. That world could not be sub-
jected to realistic and believable manipulations by the fiction writer. Nor can
one have a literature in a world where everything is totally random and
chaortic, because then what happens tomorrow has nothing to do with what
happens today.

The importance of contingency in economics has been stressed by Brian
Arthur of the Santa Fe Institute. As an example. he argues that the victory of
the VHS system over Betamax for video recording, or combustion engines
over steam engines, was depenclent on spurious historical events rather than
on the technical superiority of the winning project. In traditional equilib-
rium economics the best product always wins.

Stephen Jay Gould has emphasized the role of contingency in determin-
ing the history of life on earth. One of my colleagues, Maya Paczuski, had been
reading Gould's books and mentioned that the importance of contingency
could be understood as a consequence of self-organized criticality. What if we
were actually able to replay history under slighcly different ciccumstances? In
real life, everything occurs only once in its full glory, so we can'tdo thac Burin
our simple model of evolution we can play God and perform the computer
simulation again, with only a tiny modification somewhere.

How could we make this idea concrete? We decided to “rewind the tape of
evolution.” At first we ran the evolution model as usual and monitored the ac-
cumulated number of mutations at one site (Figure 38), recovering the usual
punctu.ated equilibrium Devil's staircase. We then idenrified the event that
initiated one of the larger avalanches involving that partic ularsite. Of course,
that could be done only in hindsight. This event happened to be ata distance
from the particular species that we monitored. We eliminated that event by
replacing the fitness with a higher value and thus preventing extinction there.
This interruption could correspond to changing the path of a meteor, or pre-
venting the frog from developing its slippery tongue. We then ran the simula-
tion again. The random numbers that were chosen were the same as before for
species not affected by the small change that we made. New random fitnesses
were chosen whenever needed for species that were affected by thechange,and

any future event that was affected. At the pointwhere the minot perturbmon
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Flgure 38. Replaying the tape of history. After running the evolution
model once (fat curve) the evolution was run once more, with a singie ran-
dom number c}langed so that a mutation event was eliminated (l)roken
curve). A large catastrop}lic extinction event was avoided, but others
oceurred later 1n the evolutionary histm-y (Bak ancl Paczusk;. 1995).

was made, history changed. The accumulated number of mutation events in
the replay of evolution was monitored as in the original history.

The new resultis shown as the broken curve in the fhgure. The large punc-
tuation is gone. However, thacdid not prevent disasters at all. Other punctua-
tions happened at later points. Thus large fluctuations cannot be prevented
by local manipulation in an attempt to remove the source of the catastrophe.
If the dinosaurs had not been eradicated by a meteor (if they indeed were),
some other large group of species would be eliminated by some other trigger-
ing event.

Because of the large sensitivity of the critical state, a small perturbarion

will eventually affect the behavior everywhere. Chaos scientists call this the
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butterfly effect. A butterfly moving its wings in South America will affect the
weather in the United States. What they have in mind is a simple system like
the Feigcnbaum map, or a pushed pendulum, or small number of coupled
differential equations. If one gives the pendulum a microscopic extra push,
the position of the pendulum at later times will greatly differ from the origi-
nal trajectory in an unpredictable way. Of course, the global weather is not a
simple chaotic system, so these considerations appear irrelevant. Our evolu-
uon model illustrates che buuterfly effect for a complex system. Any small
changeof any event will sooner or later affect verything in the system. If the ini-
rial eventcaused a large avalanche, the effect will take place sooner rather than
later. We believe that the effect that we have described is the real butterfly
effect, in contrast to the one found in simple chaotic systems that have no rel-
evance to evolution or any other complex system.
To tllustrate the connection between criricality and punctuated equilib-
ria, we also ran a simulation for a noncricical system. We stopped evolution be-
fore 1t had evolved to the critical point, and did the same two computer runs,
with and without eliminating an extinction event. The noncritical evolution
is gradual, with no large intermittent bursts. Changing or eliminaring one
roll of a die does not have any dramatic outcome whatsoever. In particular,
species that are distant from the event that was eliminated were not affected at
all in the simulation. All of these simulations can conveniently be done by

means of Dante Chialvaco’s dice game.



chapter 9

t}leory of
the punctuated

equilibrium model

The reader who is not mathematically and analytically inclined may skip
most of this chapter, in which we take a brief look into the mathematical ana-
lytical theory of the punctuated equilibrium model, except for the final sec-
tion, which points out an insightful analogy between evolution and earth-
quakes. It is important not to skip this section because the main point of this
book is to prepare the ground for, and to develop, relevant analytical insight
into the behavior of the model, and hence into the underlying physical
processes. The main reason fordealing with grossly oversirnpliﬁed toy models
is that we can scudy them not only with computer simulations but also with
marthematical methods. This puts our resules on a ficmer ground, 50

that we are not confined to general grandiose, philosophical clatms.

As a fringe benefit, the insight achieved from the study of the
simple evolution model can be applied to the Game of Life.
providing a spectacular, rorally unexpected link berween
theory on the most microscopic level-—particle theory—

and the complex behavioc of Conway's Game of Life.
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What Isa Theory?

Curiously, the concept of what constitutes a theory appears to be different in
biology and physics. In biology, Darwin’s thoughrs about evolution are always
referred to asa theory, even though ttis only a verbal characterization of some
general observations. There is nothing wrong with thar. According to one of
the most fundamental principles of science, a theory 15 a statement about
some phenomenon in nature that in principle can be confronted with reality
and possibly falsified. The descriprion can be either verbal or mathemarical.
In physics, we use the language of mathematics to express our theortes. To
confront the theory with reality, we solve equations and compare with ex peci-
ments. The result of the theory is a number chat is compared with a number
measured by some apparatus. If there is disagreement, we return to the draw-
ing board. When theories are expressed verbally in terms of much less precise
languages, the confrontation with facts is much more cumbersome and leaves
space for endless discussions among experts as to what constitutes the better
desc ription. Sometimes the experimental observation itself, without any con-
densation into more general principles, is viewed asa theory.

The science of paleontology isan em pirical observarional science like as-
tronomy and experimental particle physics. However, there seems to be a be-
lief, based on some misguided inferioricy complex acknowledged and dis-
cussed at great length in the paleontologist Stephen Jay Gould's Wonderful Life,
thac the science becomes more respectable if the word theory can be atrached to
it. The science has been dismissed as “theoretical impotent.”

This ambiguity about what counts as a theory became clear ro me at my
firse meeting with Gould. I was giving a physics colloquium at Harvard's
physics department in 1993, just about the time when the original work with
Kim Sneppen was com pleted. My host was David Nelson, professor of con-
densed matter physics. [ expressed a wish to discuss our ideas with Gould,
who is also a professor at Harvard. Unfortuna[ely. my schedule for that day
(not to speak of his) was completely full so nothing was arranged.

In the eventng, David invited me to the Harvard Society of Fellows for
dinner. There was barely time for that, since I had to take an 8 o’clock flight

back from Boston to Long Island. I happened to be sttting next to the presi-
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dentof the society, and on the other side of the president was a smiling gentle-
man. [ introduced myself. “Stephen Jay Gould,” the gentleman responded.
What a coincidence—the very person I wanted to meet was my neighbor at
the table. That should not be wasted.

“Wouldn't it be nice if there were a theory of punctuated equilibria?”
started.

“Punctuated equilibria is a theory!” Gould responded.

Wheredo you go from there? Not much communication ook place, and

I had to run to catch my plane.

The Random Neighbor Version
of the Evolution Model

How does one go aboutconstructing a theory in the physicist’s sense? The con-
struction of a simple model in conjunction with computer simulations does
notin itselfconstitute a full-fledged theory. Although the numerical resultsdo
provide predicrions to compare with observations, they give only a limited
amount of insight into the physical process of selforganized criticalicy. The
main advantage of having simple models of complex phenomena is that one
mighteventually be able todeal with them with powerful mathematical meth-
ods. For that reason, we have stripped down the evolution model as far as possi-
ble. The computer simulations actas a guideline for the analytical approach.
They help us focus our ideas. The model and the numerical simulation serve as
a bridge between nature and a mathematical theory. The main theoretical is-
sues to be addressed are the process by which the model organizes itself to the
critical state, and the characterization of the critical state, expressed for in-
stance in terms of the critical exponents for the power laws characterizing the
critical state, which eventually should be compared with observations.

After constructing our model, and doing the first preliminary computer
studies, we approached our colleague Henrik Flyvbjerg who has a more
mathematical mind, and already had worked on Stuart Kauffiman’s models
with Bernard Derrida of Saclay, France. Also, Henrik was the primary intel-
lectual capacity in our theoretical proof that Kauffman’s NKC modelsdo not

exhibit self-organized criticality.
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Henrik was visiting Princeton Universiry, so we agreed to meet midway,
in Manhattan. While walking down Eighth Avenue from midtown all the
way 0 Bactery Park, Kim Sneppen and I explained to Henrik how we had
finally come up with a self-organized critical model of evolution. It didn't
take Henrik long to come up with a version chat would yield to rigorous
analysis. While we were having lunch, he also ﬁgured out a rigorous way of
properly defining the avalanches in terms of the acuvity below the critical
threshold in Figure 3.

Instead of p[acing the species in a circle, he let each species interact with
two randomly selected species in the system. At each time step one would se-
lect the species with the lowest fteness, and two other random species, and pro-
vide all three with new random fitnesses. In Dante Chialvo's game version,
that would correspond o a situation in which the student with the lowest
value on the die and two other random students in the class would roll their
dice ateach time step.

Henrik calculated the fitness threshold above which all species would
find themselves after a transient time. The threshold is at t /3,10becom pared
with 0.667 for the chain model. This number in 1selfis of no importance. He
also calculated the exponenc of the power law for the avalanche distribution,
7= 3/2 There would be slightly fewer catastrophic events than in the origi-
nal model in which T was 1.07. This exponentseems to be in better agreement
with Raup’s data for the distribution of extinction events (Figure 5). Many
other results are now available on the random neighbor model. As usual, the
resulting mathematics turned out to be highly complicated despite the sim-
ple nature of the model.

The avalanche process in the random neighbor model can be thought of
as a “random walk.” At a given stage of the propagating avalanche, there will
be a number of active species with fitnesses below the threshold. At che next
ume step, the number of active species will take a random step: the number
will either increase or decrease by 1. The process continues until there are no
more active spectes, and the avalanche is over.

In his book Extinction: Bad Luck or Bad Genes?, Raup has made some similar
observations. Estimating the lifetimes of various families of species using Sep-

koski's data, he suggested that the process indeed is a random walk, in which
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at each step the number of species in the family increases or decreases by L
Unfortunately, Raup is not a good mathematician so his analysis of the conse-
quences of that picture is flawed; he thought that it would lead to a “charac-
teristic lifetime” of a couple of millions of years, in contrast to the power law
without characteristic lifetimes of species. Henrik Flyvbjerg, Kim Sneppen,
and T have analyzed Raup's “kil! curve” (Figure 39) on which he based his the-
ory, and realized that it is a very beautiful power law, with exponent 2. This
might be one of the best indications that life is indeed a self-organized cricical
phenomenon. We do not understand why the exponent s 2.

There is another solvable model with a good deal more complexity. In
1993 10 1995 Stefan Boettcher was a research associate at Brookhaven working
mainly in the theory of particle physics. He became interested in the world of
self-organized criticality, following a general tendency of particle physicists to

look elsewhere into less crowded areas of science. Maya Paczuski and
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Flgure 39. (a) Raup's “kall curve.” The plot shows a l'listogram of

the number ofgenera witha given lifetime distribution.
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Figure 39. Continued (b) Log plot of the same data. The distribution 15

a power law with exponent roughly equal to 2.

Boettcher came up with a model in which each spectes ts explicutly character-
ized by many traits, cach of which gives a contribution to the fitness of the
species. Ateach time step, the single tratt wich the lowest fitness among all the
spectes 1s “murated,” that s, the corresponding fitness is re placed by a random
number between o and 1. This traitinteraces with one traicof the species to the
right in a food-chain geometry and one trait to the left. Those traits are also
assigned random new fitnesses. When there is exactly one trait for each
species, the model reduces to the original punctuated equilibrium model.
Surprisingly, in the limic where there are many traits, the model can be
solved exactly by very sophisticated mathematical methods. The distribution
ofavalanche sizes is a power law with exponent 3/2 just like Henrik’s random

neighbor model. The punctuared equilibrium evolution for a single species is
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Figure 40. Punctuated equilibrium in the Paczuski-Boettcher model.
The curve shows the total number of mutation events for a single species
vs. time. T he distribution of the durations of the periods of stasis can be
caleulated gomusly. The exponent 15 7/4.

depicted in Figure 40. The distribution of plateaus of the Devil's staircase is

given by a power law with an exponent of7/4.

The Self—Organization Process

The general process of self-organization in the punctuated equilibrium
moedel has been studied by Maya Paczuski, Sergei Maslov, and myself. In
contrast to sand models and earthquake models, it is possible O construct a
mathematical theory for the slow process in which the ecology organizesitself
to the critical state.

Sergei Maslov did his undergraduate studies at the presugious Landau
Institute in Moscow. His advisor was Valery Pokrovsky, famous for inventing
the scaling theory of phase transitions on which essentially all our presentun-

derstanding of critical phenomena is based, and for which, unexplicably, he
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did not receive the Nobel Prize. Our ideas of self-organized criticality (SOC)
fall well in line with those ideas. During the last years of the Cold War, I had
enjoyed visiting the Landau Institute many times, and developed some good
ﬁ'iendships. Secience, and physics in particular, enjoyed a good deal of respect
and thrived quite well in the old Sovier Union. T had worked with Valery on a
number of projects in condensed matter physics. Valery recommended Sergei
to me, and we had him enroll at the State University of New York at Stony
Brook, which is near Brookhaven National Laboratory. This led to his fruitful
collaboration with Maya and me.

Ever since the inception of SOC, I had been frustrated by the lack of ana-
lytical (pen-and-paper) progress on SOC. Yes, indeed, there were the nice,
exact results by Deepak Dhar, and beautiful approximate schemes for caleu-
lating the exponents, in particular by Luciano Pietronero’s group in Rome,
but there was essentially no progress on the important question of how the
system becomes atrracted to the critical state. However, this situation changed
for the better in our collaboration with Serget.

Theapproach to thecritical point follows a characteristic pateern (Figure
30). The value of che largest fitness belonging to any specics that has mutated
up to a given time follows the stepwise curve shown in the figure. The steps of
that curve show the points in time when thar fitness grows. For a while after
the step, there are lower fitnesses in the system, but eventuaily these low
fitnesses are erased, and the curve has another small up-step. We call this curve
the “gap” curve (and the equation that describes it the “gap” equarion) since
there are no species with fitnesses below the curve at the points in time when
there isastep. The mutation activity between the steps are called “avalanches.”
The avalanches represent cascades ofextinction events. One can show that the
mutarions during the avalanches are connected in a tree-like structure to the
first mutacion in the avalanche, thatis, they are generated by adomino effect.
After the completion of the avalanche where the curve makes a step, the activ-
1ty jumps to somewhere else 1n the ecology, general[y not connecced with any
species that murated in the previous avalanche.

As the plateaus of the fitness curve reach higher and higher values, the
avalanches, on average, become bigger and bigger. Evcntually. the size of

avalanches reaches inﬁnity, limiced only by the total number of spectes in the
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system, and the stepwise envelope curve ceases to increase. It gets stuck at the
value f, = 0.667. At chat time the system has become critical and seationary.
During the avalanches the fitnesses of some species are, by definition of the
avalanches, less than the critical value, bur ar the end of an avalanche all
fitnesses are again above the critical value. Thus, the self-organization can be
described by an inescapable divergence of the size of avalanches. This dive-
gence isdescribed by a power law with an exponentgamma(7y), where y = 2.7
in the model in which the interacting species were arranged on acircle.

The asymprotic approach of the gap fro the critical value as a function of

time 1s yet another power law:

f6 = - A(;’,)”m_ §

Here, ¢ is the toral number of update steps, Nis the number of spectes,and
A 1s a constant factor. This equation is the fundamental equation for the
process of self-organization. [t shows that as t becomes larger and larger che
gap f gets closer and closer to the critical value f. The envelope in Figure 30
follows that formula. The critical state wich the unique value of the gap tsan
ateractor foc the dynamucs, in contrast to non-self-organized critical systems
where tuning s necessary. We call this equation the “gapequation.”

A similar process 1s responsible for the criticality in sandpile models, al-
though the insight here is mostly numerical. As the pile becomes steeper and
steeper, the sand slides become larger and larger, until they reach the crirical
s[ope where they diverge and cover the entire system; this prevents further

growth.

The Critical State

Once the system reaches the critical state, the evolutionary dynamucs are de-
scribed in terms of the spariotemporal fracral shown in Figure 32. We have
already defined the fractal dimension D of this fractal, and we have also
defined the exponent T for the avalanches. [nterestingly, all other quantities
that one might think of measuring can be expressed in terms of those two
exponents. For instance, the exponent p = 1/(y — 1) in the gap equation

for the relaxation of the critical state is a simple algebraic exXpression,
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p=(1+ 1/D—1)/(x — 1/D). Another formula that we have derived al-
lows us to determine the threshold very accurately. It turns out to be f, =
0.66700, and not z/; as we believed for a long time; it just happens to be very
close.

Another quantity that we have ignored for some time is the power spec-
trum, i.¢., the quantity that is supposed to show 1 / 'f-type noise. Again, we con-
sider the mutation activity of a single species as time progresses. The puncru-
ared equilibrium behavior, with periods of stasis of all durations separating
bursts of activity, gives rise o a power spectrum S{ f) = 1/f @, where the expo-
nentot = 1 — i/D. For our model, the exponent is 0.58; for the Boetrcher-
Paczuski model che exponent can be found to be exactly 3 /4

Thus, everything is quite well understood for the punccuated equilib—
rium model. The existence of the self-organized critical state has been proven.
The resulting dynamics can be understood in terms of an underlying spa-
tiotem poral fractal. The power spectrumis 1 / 'f-like; there are avalanchesof all
sizes. It provides insight into the origin of all the empirical results discussed in
Chapter 1. Of course, our models are necessarily quite abstract, but they are
robust. One can change features of the models without changing the critical-
ity. This feature makes us believe that the models may be general enough to
span the real world. As a fringe benefir, all the theoretical resules hold for
other models of self-organized criticality that are closely connected to phe-

nomena such as fluid invasion and interface depinning,

Revisiting the Game of Lafe

Avalanchescan be described by a simple terminology borrowed from particle

physics. The species that have fitnesses below the threshold of 0.66700, shown

in Figure 31,can be thought ofas “patticles.”The avalanchescan be thoughtof

as cascade processes in which particles move, branch into more particles, or
die. A particle moves when exactly one of the species to the right or to the left
becomes a particle, that 1s, it gets a new fitness less than the critical value. A
particle dies when all the species affected by the mutation process get fitnesses
above the cricicality. A particle branches into two or three particles if two or

three of the species get fitnesses bélow criticality. An avalanche is over when
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there are no more particles. Then a new avalanche is initiated from a species

with fitness at che critical value, and so on.

Recall how we studied the Game of Life. Starting from a static “dead”
conﬁguration, we started an avalanche of individuals coming and going, in a
process that is entirely similar, Live sites may move, die, or branch out in the
same way, until the Game of Life comes to rest in a new static state, and a new
avalanche is initiated.

Particle physicists have constructed a theory for the phenomenon of cas-
cade processes known as “Reggeon field theory" after its inventor, the particle
physicist C. Regge of Italy. The theory describes a process in which particles
can splitup into other particles, and also annthilate each other. Reggeon field
theory is not self-organized critical, but can be made critical by tuning the
branching probability ofthe particles, Just like a nuclear chain reaction. Maya
had the idea that perhaps the crirical behavior, and therefore the complexity
of the Game of Life, can be understood from Reggeon field theory at its criti-
cal point, with the active sites having small fitnesses during the avalanches rep-
resencing the particles.

We went to the library and found the best values for the avalanche distribu-
tion exponent in the two-dimensional version of Regge field theory, or “directed
petcolation,” which it ts also called. The value of the exponent was 1.28. To ger
the best possible value for the exponentin the Game of Life, we conracted wo of
our colleagues, Preben Alstrgm at the Niels Bohr Instituee in Copenhagen, and
Jan Hemmingsen ac the German research facility in Juelich. They had made
enormous numerical simularions similar to ours on the Game of Life, with
avalanches extending to 100 million mutations. It is better to rely on someone
else’s results so as not to be prejudiced by our own ideas and wishes.

The results came back immediately: the value of the exponent indeed was
1.28! Thus, we had discovered a remarkable and very deep connection of Con-
way's Game of Life with its zoo of bizarre creatures, through our simulations
of our evolution model, to the intricacies of particle physics. From the com-
plex all the way to the simple.

Isn'c this what science is all about? Relating hitherto disparate, seemingly
unrelated phenomena to each other, thereby reducing the amountofunknown

quantities in the world. We shall see yet another surptising example of this.
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Revisiting Eart}lqualtes

Very recently, things took yet another unexpected turn. Keisuke Ito of Kobe
University in Japan, who was among the first to realize that earthquakes
might be a self-organized critical phenomenon, made another interesting ob-
servation.

Ito realized that the punctuated equilibrium model can roughly be
thought of as an earthquake model, simply by a change in terminology. The
fitness landscape in the evolution model is equivalent to the heterogeneous
barrier distribution over a fault plane that generates earchquakes, He had the
two-dimensional version in mind, in whicheach species affectsits four nearest
neighbors. Mutation corresponds to rupture. In seismology, a nonuniform
distribution of strengths over a faulc plane is described in terms of “bar-
riers” or “asperities,” which are considered to cause the complex rupture
process of carthquakes. The fitnesses in the evolution model can be thought
of as the asperities in a fault model.

During an earthquake, a rupture starts from the weakest site in the crust
with the minimum barrier strength. When che site breaks, che stress in cthe
neighborhood changes. This can be modeled by assigning new random num-
bers to the new barriers at all those sites. Ruprure propagates as long as the
new barriers are weaker than che threshold for cupture. The carthquake stops
when the minimum barrier becomes stronger than the threshold. Another
earthquake starts from che site with the minimum barrier after some time
when the tectonic stress 15 increased again. All these phenomena follow the
punctuated equilibrium model.

To summarize, [to views the entire dynamics of the fault zone as the dy-
namics of the evolution model depicted in Figure 32. We are dealing with one
single dynamic process, not one process for each earthquake. Also the dynam-
1cs cannot be understood as a phenomenon associated with faults created by
some independent process. The fault structure and the earthquakes are both
generated by one process. There is only one spatiotemporal fractal steucture.
The spatial and temporal structures are two sides of the same coin. The tem-
poral behavior at a specific site is given as a vertical cut in this fractal, and the

spatial behavior 15 given as a horizontal cut.
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Figure 4]1. Distribution of waiting times (hﬂrst return" times). and “all
return times for earthquakes in California (19?1“-1 985). The distri-

bution ofwaiting times 15 a power law with exponent 1.4. This shows
that eartl\quakes area seif—organized eritical p]\enomenon (Ito. 19935).

How does this correspond to reality? Ito considered the time intervals 1t
would take forearthquakes in California to recurn to the same small area, that
is, he looked at the distribution of periods of stasis between earthquakes ata
given location. He measured the distribution of these return times for 8,000
earthquakes. The resultis shown in Figure 41. Strikingly, it is a power law with
an exponent of 1.4, very similar to our exponentof 1.58. He also considered the
disiribution of times from a given earthquakc to any subsequent earthquakes
in the same region, not just the ficst earthquake. That 1s another power law,
with exponent o.5, compared with our exponent o.42. Finally, he measured
the distribution of spatial distances from one earthquake to the nextconsecu-
tive one. That is another power [aw with exponent 17. The fact that there are
power laws in both space and rime suggests that there is one underlytng space
time fractal for the activity pattern of earthquakes in California, and thatitis
very possible that this fractal is generated by a dynamic process following

rules similar to our evolution model.



174 How Nature Works

The empirical result demonstrates that earthquakes are a self-organized
critical phenomenon, with all of its hallmarks. The empirical power law for
the return time, t.e., the periods of stasts, is interesting because it demonstrates
that earthquakes are not periodic. There is a tendency, even among scientists,
to view events thatoccur with some degree of regularity as periodic, as we have
already seen in connection with Raup and Sepkoski’s view of extinction data,
The power law indicates that the longer you have waited since a large earth-
quake at a given location, the longer you can expecr still to have to waig, con-
trary to common folklore. Earthquakes are clustered in time, not periodic.

The same goes for evolution. The longer a species has been in existence,
the longer we can expect it to be around in the future. Cockroaches are Likely
to outlast humans.

I have often been asked what the realization chat nature operates ata self-
organized crinical state is “good for.” How can that help us predict or prevent
earthquakes? How can [ use it to make money on the stock market? If Tam so
smart, why am I not rich? Usually I don't like to answer chese questtons, not
because [don’t believe that the basic insight into how things work will not pay
off at some time, but because [ believe that acquiring insighe is in itself a
worthwhile effort.

There is one business that is entirely based on the statistical properties of
events: the insurance business. I should be able to make a profit selling earch-
quake insurance! I would approach residents in earthquake areas where there
has not been a major earthquake for a long time. The sales pitch would point
out the “obvious” fact that an earthquake “is due”; nevertheless I would sell
earthquake ar a price that is lower than that of my competitors, On the other
hand, I would stay away from areas where there has recent[y been a major

earthquake.

chapter 10
the brain

The human brain isable to form images of the complex world surrounding us,
so it might seem obvious that the braia itself has to be a complex object. How-
ever, 1t ts not necessarily so. We have seen that complex behavior can arise from
models with a simple architecture through a process of self-organization. Per-
haps the brain is also a fairly simple organ.

Starting from a native state with lictle structure, the information about
the surrounding enviconment is coded into the brain by a process in which
the brain self-organizes into a critical state. In analogy with the sandpile, a
“thought” may be viewed as a punctuation, te., a small or large avalanche trig-
gered by some minor nput in the form of an observation, or by another
thought.

The brain contains trillions of neurons. Each neuron may be

connected to thousands of other neurons. The ﬁring mecha-
nisms of individual neurons are fairly well understood, but
how do trillions of neurons work cogether to form the

emergent process we call chinking? Comparing with
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the way computers work, the function of the computer is not apparent from
the properties of the individual cransistors making up the computer. Those
who construct computers do not even have to know how transistors work.
The function of the computer comes from the way these interconnected tran-
sistors work together.

There is at least one major conceptual difference between the computer
and the brain, The computer was built by design. An engineer put together all
the circuits and made itwork. Noengineer—no computer. However, there isno
engineer around to connect all the synapses of the brain. Even more to the poing,
there is no engineer available to make adjustments every time the outer world
poses the brain with a new problem. One might imagine that the brain is ready
and hard-wired from birth, with its connections formed through biological
evolution, with all possible scenarios coded into the DINA. This does not make
any sense. Evolution isefhcient, but not chatefficient. Indeed, the amountofin-
formation contained in the DINA is sufficient to determine general rules for
neural connections but vastly insufficienc to specify the whole neural circuitry.
While there 1s some hard wiring—a lobster brain is different from a human
brain—the functionality has to evolve during the lifetime of an individual. This
means that the structure has to be self-organized rather than designed. Brain
function is essentially created by the problems the brain has to solve.

Thus, to understand how the brain functions it is tmportant to under-
stand the process of self-organization. It is not enough to take the brain apart
at some given instant and map our all existing connections, just as we don't
understand the sandpile by just making a map of all the grains at some given
poiat in rime. Essenrially all modeling of brain function from studying mod-
els of neural networks has ignored the self-organized aspects of the process,
but has concentrated on designing a working brain model by engineering all
the connections of inputs and outputs. This is good enough if the system is
going to be used for some engineering purpose, such as pattern recognition,

butitis basical[y misguided when it comes to understanding brain function.

Why Should the Brain Be Critical?

One may argue atleast two differént ways that the brain must be critical. First,
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stance a visual image. The input signal must be able to access everyihing that
is stored 1n the brain, so the system cannot be subcritical, in which case there
would be access to only a small, limited part of the information. Grains
dropped on a subcritical sandpirle can only communicate locally by means of
avalanches. The brain cannot be supercritical either, because then any input
would cause an explosive branching process within the brain, and connect the
input with essentially everything that is stored in the brain.

This can be seen in a different way. Consider a neuron somewhere in the
brain, and an output neuron at a distance from that neuron. By changing the
properties of the neuron, for instance by increasing or decreasing the strength
of its connection with a neighbor neuron, it should be possible o affect the
output neurons in the brain; otherwise that neuron would not have any
meaningful function. If the brain is in the frozen subcritical state, there will
be only a local effect of that change. If the brain is in a chaotic disordered state
with neurons firing everywhere, it 1s not possible to communicate with the
output neuron, and affect its signal properly, through all the noise.

Hence, the brain must operate at the critical state where the information
is just barely able to propagate. At the critical state the system has a very high
sensitwvity to small shocks. A single grain of sand can lead w0 a very large
avalanche. We say that a critical system has a large suscepribility. Of course,
the avalanches at che critical state in the sandpile do not perform any mean-
ingful function, so our problem is to each the avalanches to connect inputs
with the correct outputs.

How does the brain organize itselfto the critical state? In the sand model,
the criticality was ensured by adding grains of sand ar a very slow rate, one
grain at the time.

In the lastcouple of years L have been working on this problem together
with Dimitris Stassinopoulos. Stassi had been working with Preben
Alstrom at the Bohr Institute on neural network models of steering
processes, such as tracking a flying targer. The network was kepracacricical
state by a feedback mechanism that would keep the output, rather than the
input, low.

It occurred to Stassi and me that maybe one could construct a toy brain

model using ideas from that work, so [ invited him to visit Brookhaven for a
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Tl’le Monl(ey Prol)lem

One of the problems in describing brain function is the uncerrainty in deter-
mining whatexactly is the problem that the brain is actually “solving.” What,
precisely is the function of the brain? It isn’t enough to simply say that it is
“thinking.” A good deal of brain research traces the location of the activity of
the brain when a person 15 subjectecl to various stimuli, but gives nextto no in-
sight on general principles. Before constructing a model, we found it impor-
tant to define a specific problem that the brain was to solve.

A hungry monkey is confronted with the following problem. To get food,
it must press one of two levers. At the same rime it is shown a signal thatcan ei-
ther be red or green. If the red signal is on, it has o press the left lever; if the
green signal is on, it has to press the right lever. The signal switches back and
forth between the red one and the green one. If the correct lever is pressed, the
monkey will get a couple of peanuts.

A block diagram of the situation is shown in Plate 9. The outer world
sends a signal to some of the neurons in the brain, through the eyes of the mon-
key. The resulting action of the monkey is fed back to the outer world, which in
turn provides feedback to the monkey and ts brain by either giving or denying
food. After a number of wrong tries the monkey learns to perform properly.

The fact that the function of the brain has to be self-organized puts severe
constraiats on any brain model. In our model, neurons were arranged on a
two-dimensional grid. The neurons in each row are connected with three
neurons at the row below that neuron, as indicated by the acrows in the block
diagram. We have also studied a network where the connections were com-
pletely random. This network functions almost as well, but is more difhcule
to illustrate graphically. The ﬁring signal from the environment is repre-
sented by pulses thatare fed into a number of random neurons, the red ones if
the signal is red, the green ones if the signal is green. It is a simple mareer to
define the initial nerwork. It took only a couple of sentences to specify the
geometry. Not much more information is needed to specify a larger network.
The brain model “at birth” is a simple structure.

At each step, each of the neurons are either in a “firing” state or a “non-

ﬁring" state, according to whether their input volrage, or porential, exceeds a
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threshold. Firing neurons send electric signals to other neurons, driving their
potentials closer to che threshold. This is very similar to the sand model, in
which a toppling occurs if the height exceeds a threshold. The signal from a
firing neuron is sent to the in puts of the three neurons in the layer below. The
input of each neuron depends on the strengths of the connections between
that neuron and the one that fired. In addition, a small amount of noise was
added roall the inputs.

The output 1s given by the neurons in the bottom row. Say, for instance,
that for the red signal neurons # toand # 15 counting from the left must fire,
and for the green signal neurons #7 and # 12 must fire (Plate 10).

In the beginning, the strengths of the connections between neurons were
chosen arbltrartly The redand green tnputs were switched every 200 time steps,
or whenever the output was correct. The feedback from the environment was
sent to all the neuron connectons in a totally democratic way. Thiscould repre-
sent some hormone, or some other chemicals fed into the brain. In this sense,
our model is fundamentally different from most other neural necwork models
in which an amount of outside com putation, not performed by the network it-
self, has to be carried out to update in detail che strength of the connections,

Ifthere is a positive feedback signal, that is, the proper output newrons fired, all the conmec-
tions between simultaneously firing neurons are strengthened whether or not they were respon-
sible for the favorable result. If there is a negative signal, all these firing connections are weak-
ened slightly. All other nonfiring connections are left alone.

This type of scheme has been tried before without much success, precisely
because of the weak communication between inputs and outputs, which
makes learning prohibitively slow. Also, whenever the red signal ison, the pat-
tern that is favorable for che green light is forgotten, and vice versa. An extra
ingredient is needed. If there are too many output cells firing, all thresholds
are raised. The function of this mechanism is to keep the ac tivity as low as pos-

sible, and it resules in setting up the brain in a critcal state. To think clearly,
you have to keep cool! If the activity becomes too low, for instance if the brain
is asleep with no output, the thresholds of all neurons are lowered and more
neurons fire. The monkey becomes hungry and activates the brain. Note that
all of these processes are brologically reasonable; they can be performed by
chemicals being sentaround in the brain without a specific address.
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Figure 42. (a) Performance vs. the number of time steps. The perfor-

mance 1s defined as the relative n\;mber of correct output cells thatare fir-
ing. Note the transition where the brain has learned to switch quickly
between the two patterns. In (I)) a five by s1x block 1s removed after
15,000 time steps. Aftera while, the brain has learned again to switch
correctly between the two outputs (Stass;nopoulos and Bal{. 1995).

o

Figure 42a shows the performance, measured as the relacive number of
output neurons that are firing correctly. After an inicial period of very erratic
response, which we call the learning period, the toy brain eventually learns to
switch quickly back and forth between the correct responses. The transition is
very sharp. Plate to shows the successful firtng patterns as yellow squares for

the two different inputs.

The Brain and River Networl(s

What happens instde the network during the Iearning process? Through a
complicated organizational process, the system creates internal contacts or

connections between selected partsof the input signal and the correct output
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cells. The process can be thought of as the formation of a river network with
dams (thresholds). When the oucpur is incorrect the riverbeds are raised (the
firing connections are weakened) and the dams are lowered (the thresholds
are lowered), which causes water to flow elsewhere; this is the process of
“thinking.” During that period there is an increased acrivity in the brain.

If at some potnt the response happens to include the correce cells, the
riverbeds are deepened but all the dams are raised, which prevents the signal
from going elsewhere. The system tries to lower the activity as much as possi-
ble while still connecting with the correct output. At some point the thresh-
olds will become too high and the output becomes too low (the monkey loses
concentration ), but the system immediately responds by lowering the thresh-
old. The small amount of random noise prevents che network from locking
into wrong patterns, with too deep riverbeds, from which it cannot escape. It
allows the network to explore new possibilities. Each input fills up a river net-
work shown by the yellow squares.

The process is somewhat similac to the mechanism for the evolution
model. During periods of low fitness (improper connections with output)
there 15 a relauvely great activity where the system tries many different con-
nections until it finds a stare with correct connections (high fitness), in which
most of the neurons are passive, justas the species in the evolution model have
fitnesses above threshold in the periods of stasis, in which they have “learned”
to connect properly with the environment.

The abiliry of fast switching is relared to the system operating at the criti-
cal point. The signal is barely able to propagate through the system. The flow
pattern is very similar to Andrea Rinaldo’s critical river networks, and does
not look like a flooded system with large lakes. A traditional neural necwork
model corresponds co a flooded system with roughly half the neurons firing
atall umes, resulung in poor communication. At the critical point, the system
can easily switch from a state in which one system of rivers is flowing to a state
in which another system of rivers is flowing to a different output. We exploit
the high suscepubility of the critical state.

The network is robust to damage. After 150,000 steps, a block of thirty
neurons was removed from the network as shown in Plawes 1oc and 10d. After

a teansient period the network had relearned the correct response by carving
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new rivers in the neowork. The performance is shown in Figure 42b. In other
words, instead of using some features of the input signal the system learns to
use other features. Think of this as replacing “vision” with “smell.”

Our toy brain model is not a realistic model of the brain. Its sole purpose
1s todemonstrate that aspects of brain function can be understood from a sys-
tem starting with a minimum amount of structure. The abiliry of the brain to
function ts intimarely related 1o its dynamics, which organize knowledge
about the outer world into critical pathways of firing networks in an other-
wise quiet medium. The criticality allows for fast switching between different
complicated parterns without interference. The memory s encoded as a net-
work of riverbeds waiting to be filled up under the relevant external stimulus.

The feedback beoween realiry and the individual through perception of

the physical world determines the interconnected structure of the brain.

chapter 11

on economics

and traffic jams

So far we have proceeded from astrophysics to geophysics, and from geophysic:
to biology and the brain. We now take yetanother step in the hierarchy of com-
plete phenomena, into the boundary between the natural world and the social
sciences. Humans interact with one another. Is it possible that the dynamics of
human societics are self-organized critical? After all, human behavior is a
branch ofbiology, so why should different laws and mechanisms be introduced
at this point? Here two specific human activities will be considered, namely
economics and trafhe. Pcrhaps these phenomena are simpler than other
human activities. At least, the accivieies can be quantiﬁed and measured, 1
terms of prices, volumes, and velocicies. That might be the reason thateconom-

ICseXIStS asa discipline indcpcndcnt of other social sciences.

Equilibrium Economies

Is Lil(e Water

Traditional equilibrium interpretations of economics

resemble the descriprion of water flowing between
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reservoirs. Goods and services flow easily from agent to agentin amounts such
that no further flow or trade can be advantageous to any trading partner. A
smallchange in the econorny, such asa change in the interest rate, causes small
flows that adjust che imbalance.

Specifically, consider two agents each having a number of apples and or-
anges. One has many oranges and few apples, the other has many applesand few
oranges. Since having too many apples or oranges may not be desirable, they
trade some of their apples and oranges. Before trading, oranges are worth more
for the agent with too few oranges than for the other agent. They trade a precise
amount such that oranges are worth exactly the same number of apples for the
two agents, which removes any incenuve for further trading. At chat point it is
not to anybody's advantage to trade further. The agentsare perfectly rational, so
they both know how many apples to buy and sell, and what the exchange rate
should be. They are perfectly predictable. In our water flow analogy, the water in
two connected glasses of water will llow from one glass to the other unal the
equilibrium point where the levels in the two glasses are the same.

Inequilibrium systems, everything adds up nicely and linearly. [ris trivial
to generalize to many agents; this sim ply corresponds to connecting more
glasses of water. The effect on the water level from adding several drops of water
ts proportional to the number of drops. One does not have to think abour the
indwvidual drops. In physics, we refer to this kind of treatment where only a
global macrovariable, such as the water level, is considered as a “mean field ap-
proxtmation.” Traditional economics theories are mean field cheories in that
they deal with macrovariables, such as the the gross national product (GNP),
the unemployment rate, and the interest rate. Economists develop mathemat-
ical equations that are su pposed to connect these variables. The differences in
individual behavior average out in this kind of treatment. No historical acci-
dentcan change the equilibrium state, since the behavior of rational agents is
unique and completely defined. Mean field treatments work quite well in
physics for systems that are either very ordered or very disordered. However,
they completely fail for systems that are at or near a critical state. Unfortu-
nately, there are many indications that economics systems are in facc critical.

Traditional economics does not describe much of what is actually going

on in the real world. There are no stock market crashes, nor are there large
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fluctuations from day to day. Contingency plays no role in perfectly rational
systems in which everything is predictable.

Equilibrium economics does noteven work for the simple example of the
agents trading apples and oranges. Neither one knows how much oranges
and apples are worth for the other agent. When offering apples for sale, they
may sell too cheaply, or ask too high a price, so that the proper equilibrium
will never be reached. They may end up with more apples than they want.
Agents in reality are not perfectly rational. In discussions with traditional
economists, I used to argue that their economics theory has o include me,
and thac I certainly am not perfectly rational, as chey themselves have argued
so convincingly.

The obsession wich the simple equilibrium picture probably stems from
the fact that economists long ago believed thar their field had to be as “sci-
entific” as physics, meaning that everything had to be predicrable. What '
irony! In physics detailed predicrability has long ago been devalued and aban-
doned as a largely irrelevant concept. Economists were imitating a science
whose nature they did not understand.

Perfect ra[ionalify makes things nice and predictable. Without this con-
cepr, how can you characterize the degree of ignorance among agents, and
how can you then predict anything? [ first faced this stubbornness to give up
the ideas of perfect rationality durtng my firsc visic to Santa Fe. During lunch
ac the Coyote Cafe with a variety of scientists visiting the institute, including
one of the foremost and smartest classic economuists, Michele Boldrin, I dis-
cussed the absurdity of the “perfect rationality concept” in a world of real peo-
ple. All the time Boldrin was nodding and saying yes, yes, yes, to all the argu-
ments. The discussion continued as we were walking back to the institute.
However, just as we were turning into the courtyard Michele concluded, “I

still prefer the 'perfect rationalicy’ concept."

Real ECOIIOmiCS IS lee Sancl

But economics is like sand, not like water. Decisions are discrete, like the
grains of sand, not continuous, like the level of water. There is friction in real
economics, just like in sand. We don’t bother to advertise and take our apples
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to the market when the expected payoff of exchanging a few apples and or-
anges is too small. We sell and buy stocks only when some threshold price is
reached, and remain passive in between, just as the crust of the earth is stable
until the force on some asperity exceeds a threshold. We don't continually ad-
just our holdings to fluctuations in the market. In computer trading, this
threshold dynamics has been explicitly programmed into our decision pat-
tern. Our decisions are sticky. This friction prevents equilibrium from being
reached, just like the friction of sand prevents the pile from collapsing to the
flac stace. This totally changes the nature and magnitude of fluctuations in
£CONOMICS.

Economists close their eyes and throw up their hands when it comes to
discussing market Aluctuations, since there cannot be any large fluctuations in
equilibrium theory. “"Explanations for why the stock market goes up or down
belong on the funny pages,” says Claudia Goldin, an economist at Harvard. If
this is 50, one might wonder, what do economists explain?

The various economic agents follow their own, seemingly random, idio-
sync ratic behavior, Despice this randomness, simple statistical patterns do
exist in the behavior of markets and prices. Already in the 1960s, a few years
before his observations of fracral patterns in nature, Benoit Mandelbrot ana-
lyzed data for fluctuations of the prices of cotton and steel stocks and other
commaodities. Mandelbrot plotted a histogram of the monthly variation of
cotton prices. He counted how many months the variation would be 0.1% (or
~0.4%), how many months it would be 1%, how many months it would be
10%, etc. (Figure 3). He found a “Levy distribution” for the price fluctua-
tions. The important feature of the Levy distribution isthat it has a power law
tail for large events, just like the Gurenberg—Richter law for earthquakes. His
ﬁndings have been largely ignored by economists, probably because they
don't have the faintest clue as to what is going on.

Traditionally, economists would disregard the large fluctuations, treating
them as “atypical” and thus not belonging in a general theory of economics.
Each evencreceived its own historical account and was then removed from the
dara set. One crash would be assigned to the introduction of program trading,
another o excessive borrowing of money (o buy stocks. Also, they would “de-

trend” or “cull” the data, removing-some long~term increase or decrease in che
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market. Eventually, they would end up with a sample showing only small
fluctuations, but also totally devoid of interest. The large fluctuations were
surgically removed from the sample, which amounts to throwing the baby
out with the bathwater. However, the fact that the large events follow the same
behavior as the small events indicates thatone common mechanism works for
all scales—just as for earthquakes and biology.

How should a generic model of an economy look? Maybe very much like
the puncruated equilibrium model for biological evolurion described in
Chapl:er 8. A number of agents (consumers, producers, governments, thieves,
and economists, among others) interact with each other. Each agent has a
limited set of oprions available. He exploits his options in an atrempt to in-
crease his happiness (or “utility function” as the economists call it to sound
more scientific), just as biological species improve cheir fitness by mutating.
This affects other agents in the economy, who now adjust their behavior ro the
new situation. The weakest agents in the economy are weeded our and re-
placed with other agents, or they modiFy their strategy, for instance by copy-
ing more successful agents.

This general picture has not been developed yet. However, we have con-
structed asim Pliﬁed toy model that offersa glimpse of how a truly interacive,

holistic theory of economics might work.

Simple ’Iz)y Moclel
of a Critieal Economy

A couple of days afrer my introductory talk at the Santa Fe Institute in 1988,
Michael Woodford and Jose Scheinkman of the University of Chicago en-
tered my office at the institute and wanted to discuss a sandpile-type model of
economics. Mike is an economist belonging to the traditional school, very
clever and very conservative, whereas Jose had already attempted to apply
ideas from chaos theory to economics. They sketched their ideas on the black-
board, and [ became very enthusiascic.

Their idea was to construct a stmplified necwork of consumers and pro-
ducers. This led to a very productive, though rather painful, collaboration,

reﬂecting the very differenc modes of operating in physics and eCONOIMICS.
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Theoretical economists like to deal only with models that can be solved
analytically with pen and paper mathematics. I always found this quite
tronic. Physics is a much simpler science than economics, but nevercheless
very rarely are we able to “solve” problems in the mathematical sense. Even
the world’s most sophisticated mathematics is insufficienc to deal rigorously
with many problems in physics. Sometimes we use numerical simulations;
sometimes we use approximate theories. Sureiy, some of these approxima-
tions must look horrifying o a pure mathemacician. However, although
sometimes based on sheer intutrion, they work well and provide a good deal
of insight into the relevanc physics. The physicist performs one dirty mache-
matical erick after another. Invariably, however, there is a mathemartician run-
ning after him, who will eventually almost catch up with him and yell, “Ttwas
all right what you did"”

It appears to me thateconomics, because of the complexity of the systemns
involved, does not call for exact machematical solutions. Indeed, the model
that we came up with, despitc its simplicity, could not be solved mathemati-
ca[ly. Iwentback to Brookhaven, where Kan Chen, the research associate with
whom [ did the simulation of the Game of Life, performed numerical simula-
tions on the model. Indeed, the model was critical, with avalanches of all sizes.
However, Mike was quite uncomfortable with the numerical nature of the so-
lution, and Kan Chen and [ continued working on the problem until we, alas,
did come up with a model that could be solved mathematically withouc
sacriﬁcing the scientific content, to eve rybody’s satisfaction.

The model is illustrated in Figure 43. It is a network of producers, who
each buy goods from two vendors, produce goods of their own, and sell them
to two customers. The producers may starc the process by having random
amounts of goods stored, or they may start with nothing. It makes no differ-
ence. At the beginning of each period, say each week, the producers receive or-
ders of one or zero units from each customer. [f they have a sufficient amount
of goods in stock, they transfer it to the customers; if not, they send orders to
their two vendors, receive one unit from each, and produce two units to fill the
order. If they have one unit left after these transactions, they store it uncil next
week. Each producer thus plays the dual role of selling to his customers, and
buying from his vendors. The process starts at the upper row in the network,
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Egure 43. Model of interacting producers. Each producer receives
orders from two customers in the row above him. If he does not have suffi-
cient amounts ofgoods 1n stock, he sends orders to two vendors further
down the network, receives one unit of goods from each vendor, procluces
two units of his own goo&s, ships the ordered amount of goods. If he has
one unit of his goo&s left after the transactions, he keeps 1t 1n stoek for the
next round. The process 18 initiated from consumer demands on top of the

diagram (Balt et al.. 1993)

which represent consumers, and ends at the bottom row, which represents the
producers of raw materials.

First, we considered the situation where each week there would be a single
“shock” rriggering the economy, with only one consumer demanding goods.
This initial demand leads to a “trickle-down” effect tn the network. Figure 44
shows a rypical state of the network, with each producer marked by the num-
ber of goods he has in stock after completing the previous week's trades. An
empry circle indicates zero units, a full circle one unit. The first vendor has
nothing in stock. He receives two units from his vendors, sells one unic to the
consumer, and keeps one unitin stock for the next week. His vendors accually
did not have the demanded products in stock, and had to send orders furcher
down in the network. After a number of events, the avalanche stops. The

figure shows the extent of the avalanche, and the amount the vendors have in
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I‘?igure 44, Networ]( (a) before and (c) after an avalanche imitiated by a
smgle demand at the position of the arrow. The arrow 1indicates the flow
of orders. The goo&s flow in the opposite direction. The black dots 1ndi-
f:ate‘ the agents who have one unit of their goods 1n stock. The gray dots
indicate agents who had to produce i order to fulfill the demands. The
enclosed area indicates the size of the valanehe { Rk or <1 1QG2)
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stock at the end of the week. Thus, small shocks can lead to large avalanches.
The contribution of the event to the GNP is the area of the avalanche, that is
the total amount of goods produced during the avalanche.

We could solve the mode! because we could relate it to another model
that had previously been solved by Deepak Dhar and Ramakrishna Ra-
maswamy at the Tara Institute in Bombay, in the context of sandpiles. The
model 1s directional, in the sense that information is only transmitted down
in the network, not up. Dhar and Ramaswamy showed that the distribution
of avalanches is a power law, N(s) = s 77, with T = .

Io go from the power law to the Levy law observed by Mandelbror, all
that one has to do 1s to consider the situanion in which each week there are sev-
eral customers, and not just one, each demanding final goods. Each demand
leads to an avalanche, so each d-ay there are many avalanches of different sizes.
One can show rigorously that for very many customers the result of the distri-
bution of the total activity is the Levy function. I was able to demonstrate this
by means of a simple machematical calculation that would satisfy any physi—
cist’s demand for rigor. Nevertheless, my methods did not satisfy my very de-
manding collaborators, who didn't yield before they found the formula for
how to add power law distributed random variables to arrive ar the Levy dis-

tribution in a mathemarics excbook.

Fluctuations and Catastrop}les
Avre Unavoidable

Our conclusion is that the large fluctuations observed in economics indicate
an economy operating at the self-organized criuical state, in which minor
shocks can lead to avalanches of all sizes, just like earthquakes. The fluctua-
tions are unavoidable. There is no way thatone can stabilize the economy and
get rid of the fluctuations through regulations of interest rates or other mea-
sures. Eventually someching different and quite unexpected will upset any
carefully architectured balance, and there will be a major avalanche some-
where else in the system.

In contrast to our critical economy, an equilibrium economy driven by

many independent minor shocks would show much smaller fluctuations.
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Those fluctuations are given by a Gaussian curve, better known as the “bell
curve” which has negligible tails. There isno possibility of having large fluctu-
ation oz catastrophes in an equilibrium economy.

Although economists do not understand the large fluctuations in eco-
nomics, the fluctuations are certainly there. Karl Marx saw these fluctuations
in employmenc, prices, and production as a symbol of the defunct capitalistic
society. To him, the capitalistic society goes from crisis to crisis. A centralized
economy would eliminate the fluctuations to the benefit of everybody, or at
least che working class. Marx arguec[ thata large avalanche, namely a revolu-
tion, is the only way of achieving qualitative changes.

Alan Greenspan, chairman of the Federal Reserve, manipulates the intec-
est rate in order to avoid inflationary bursts—even with the prospect of slow-
ing down the economy. Common to Greenspan’s and Marx’s view is the no-
tion that flucruations are bad and should be avoided in a healthy economy.

[feconomics is indeed organizing itself to a crirical stace, it is not even in
principle possible to suppress fluctuations, Of course, if absolutely everything
ts dectded centrally, luctuations could be suppressed. In the sandpile model,
one can carefully build the sandpile to the point where all the heights are at
their maximum value, Z = 3. However, the amount of com putations and de-
cistons that have to be done would be astronomical and impossible to imple-
ment. And, more important, if one indeed succeeded in building this maxi-
mally steep pile, then any tiny impact anywhere would cause an enormous
collapse. The Soviet empire eventually collapsed in a mega-avalanche (not
predicted by Marx). But maybe, as we shall argue next in a different context,

the most efficient state of the ¢conomy 1s one with fluctuations of all sizes.

Traffic Jams

Taking a broader view, economics deals with the way humans interacg, by ex-
changing goods and services. In the real world, each agent has limited
choices, and a limited capability of processing the information available; he
has “bounded rationality” In some sense, the situation of the individual
agent is like a car driver in traffic on a congested highway. His maximum
speed is limited by the cars in front of him (and perhaps by the police); his

On Economics and Traffic Jams 193

distance to the car in fronc of him is limited by his ability to brake. He is ex-
posed to random shocks from the mechanical properties of his car and from
bumps in the road.

Kai Nagel and Michael Schreckenberg of the University of Duisburg,
Germany have constructed a simple cellular automaton model for one-lane
highway teafhic along those lines. Cars can move with velocity o, 1, 2,3, 4,01 5.
This velocity defines how many “car lengths” each car will move at the next
time step. Ifa car 1s moving too fast, it must slow down to avoid a crash. A car
thac has been slowed down by a car in front will accelerate again when given
an opportunity. The ability to accelerate is less than the ability to break, thatis
it takes more time steps to go from o to 5, than to brake from 5 too. Depend-
ing on the total number of cars on the road, there are two possible situations.
Ifthere are few cars there is a free flow of cars with only small craffic jams. If the
density is high there is massive congestion. '

KaiNagel came to visit usa couple of years ago, while still a graduace stu-
dent in Germany. Kai had already carried outa theoretical study sn meteorol-
ogy, arguing that the formation of fractal clouds is a self-organized crirical
process. Maya Paczuski and Kai considered the traffic emerging from one
large crafhe jam. Think of the Long Island Expressway, which runs along
Long Island, stacting at the Queens Midtown Tunnel leading into Manhat-
tan, They came up with a theory that could describe the traffic coming outof
the tunnel in che rush hour, where the largest possible number of cars would
be pumped into the expressway. Everybody living on Long Island is familiar
wich the resulting huge trafhe jams that can occur on the expressway, which
has been called “the world's largest parking lot.”

Figure 45 shows the computer-simulated trafhc jams. The horizontal
axis is the highway, the vertical axis is time. Time is increasing in the down-
ward direction. The cars are shown as black dots. The cars originate from a
huge jam to the left, which is not seen, and all move to the right. The diagram
allows us to follow the pattern in time and space of the traffic. At each time
step, the position of each car is shifted to the right by an amount equal to the
velocity of that car. Traffic jams are shown as dense dark areas, where the dis-
tance between the cars is small. Also, the positions of cars between two succes-

sive horizoatal lines are only shifted slightly since thetr velocities are low:
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Figure 45. Traffic jam simulated by computer. The horizontal direc-
tion indicates a hig}lway. Cars are shown as black dots. Time progresses
1n the downward direction. The dots form trajectories of the individual
cars, which appear as lines. The dark areas witha h;g}l density of cars
indicate traffic jams. The pattern was set up froma }mge jam at the left
pumping cars 1nto the highway at the maximum rate. The emergent _‘| am on
the rig]\t was 1mitiated l)y slowing down one car in the t & righthand pan
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Traffic jams may emerge for no reason whatsoever! They are “phantom”
traffic jams. A small random velocity reduction from 5 to 4 of a single car is
enough to initiate huge jams. We have met the same situarion before: for
carthquakes, for biological evolution, for river formation, and for stock mar-
ket crashes. A cataclysmic triggering event (like a craffic accident) is not
needed. Our natural intuition thac large events come from large shocks has
been violated. It does not make any sense to look for specific reasons for the
jams.

The jams are fractal, with small subjams inside big jams ad infiniturmn.
This represents the icritating stop-and-go driving pattern that we are all fa-
miliar with in congested traffic. On the diagram, itis possible to trace the in-
dividual cars and observe the stop-and-go behavior.

Trafthc jams move backward, not forward, as can be seen in the ﬁgure. For
comparison, a similar diagram for the trafhc on a real highway in Germany is
also showed in Figure 46. The picture is based on photos of the highway taken
at regular intervals. Note that the general features are the same as for the com-
puter simulations, including the backward motion of the jams. Eventually, the
jams dissolve. From extensive computer simulations, the number of trafhc
jams of each size was calculared. Of course (you guessed it) they found a power-
taw distribution. The exponent for the power faw appeared to be close to e
This suggested an elegant bur simple theory of the phenomenon, a “random
walk theory.”

Each jam starts at a random nucleation point, at the top of the figure. At
each time step, the size of the jam can either increase, with a cerrain probability,
or decrease, with the same probability. Because of this 50-50 situation, the
process is critical. This process can be solved mathematically, and gives a power
law distribution, with an ex ponent that s exactly 1.5 as suggestcd by the simula-
tions. We have met the random walk picture of self-organized critical systems
before, in the context of the random neighbor model of evolution in Chapter g.

Highway trafhc is a classic example of 1/f noise. Over 20 years ago,
T Musha and H. Higuchi measured the flow of traffic on the Kanai Expressway
in Japan as a function of time, by standing on a bridge over the highway and
measuring the times that cars passed under the bridge. They observed a curve

similar to that of light from a quasar. When measuring the power spectrum,
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Space (Road)}

Time

Figure 46. Traffic jam on a German highway from aereal pl\otography.
The plot 1s stmilar to the one from the numerical stmulation in Figure
45, with each line representing the motion of one vehicle (rrreiterer).

they found components of all frequencies, with the famous 1 /f distribution.
Kai and Maya did the same measurement on the computer-simulated craffic
dara. Standing on a bridge and monitoring the trafhic corresponds to measur-
ing the patterns of black dots along a vertical line. The signal isa Devil’s stair-
case, just as for the evolution model. They also found a 1 /f* noise {Figure 47)
in the computer simulations. Moreover, they were able to prove mathemari-
cally thata = 1 from a cascade mechanism, where subjams at each time step
can grow or die or branch into more jams. For once, we have an accurate and
complete understanding of the elusive 1/f noise in a model system that actu-
ally describes reality. As for the other phenomena that we have studied, [/f
noise is due to scale-free avalanches in a self-organized critical system. In the
case of traffic, the :/f notse is the mathematical description of the irritating,

unpredictable stop-and-go behavior in traffic jams.
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Figure 47 Power speetrum for traffie jam (Nagel and PaczusI(i. 1995)

Kat and Maya studied the situation in which there were only very rare
random fluctuations initiating traffic jams. Interestingly, they point out that
technological advancements such as cruise control or radar-based driving
support would tend to reduce the fluctuations around maximum speed, and
thus increase the range of validity of their results. One unintended conse-
quence of these flow control technologies is that, if they work, they would in
fact push the traffic system closer to its underlying critical poiat, thereby
making predicrion, planning, and control more difficult, in sharp contrast to
the original intentions. Note the analogy with attempts to regulate economy
(or sandpiles). Self-organized criticality is a law of nature for which there is
no dispensation.

They made one final observation. Trafhic jams are a nuisance, amplifted
by our lack of ability to predict them. Sometimes we are slowed down by a
large jam, sometimes we are not. One mught suspect that there would be a

more efficient way of dealing with the traffic. In fact there might not be.
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The critical state, with jams of all sizes, is the most cfficient state. The system has self-
organized to the critical state with the highest throughput of cacs. If the den-
sity were slightly less, the highway would be underutilized, if the density were

slightly higher, there would be one big permanent, huge jam, absorbing a
fraction of the cars. In both cases, the throughput would be less.

More precisely, the critical state is the most efficient state that can actually be
reached dynamically. A carefully engineered state where all the cars were moving
atvelocity 5 would have higher throughput, but it would be catastrophically
unstable. This very efficient state would collapse long before all the cars be-
came organized.

This gives some food for thought when applied to economics in general.
Maybe Greenspan and Marx are wrong. The most robust state for an econ-
omy could be the decentralized self-organized critical state of| capitalistic eco-
nomics, with fuctuations of all sizes and durations. The Auc tuacions of prices
and economic activity may be a nuisance (in particular if it hics you), but that
is the best we can do!

The self-organtzed critical state with all its fuctuations is not the best

possible state, but it ts the best state chac is dynamica[ly achtevable.
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